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Foreword

The ACS Symposium Series was first published in 1974 to pro-
vide a mechanism for publishing symposia quickly in book form. The
purpose of the series is to publish timely, comprehensive books devel-
oped from ACS sponsored symposia based on current scientific re-
search. Occasionally, books are developed from symposia sponsored by
other organizations when the topic is of keen interest to the chemistry
audience.

Before agreeing to publish a book, the proposed table of con-
tents is reviewed for appropriate and comprehensive coverage and for
interest to the audience. Some papers may be excluded to better focus
the book; others may be added to provide comprehensiveness. When
appropriate, overview or introductory chapters are added. Drafts of
chapters are peer-reviewed prior to final acceptance or rejection, and
manuscripts are prepared in camera-ready format.

As a rule, only original research papers and original review
papers are included in the volumes. Verbatim reproductions of previ-
ously published papers are not accepted.

ACS Books Department
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Preface

Fundamental challenges in computational chemistry include the
high computational cost of ab initio calculations in terms of time,
memory, and disk space requirements; difficulties that arise when stan-
dard advanced computational treatments are used to describe processes
such as bond breaking; determination of the best approach toward
functional development in density functional theorgy, understanding the
means for quantitative prediction of thermonuclear kinetics; and
computational chemistry treatment of transition metal systems for
reliable prediction of molecular properties. This book addresses these
important problems, featuring chapters by leading computational
chemists and physicists.

Topics include the development of methodology and assessment
of approaches used to address bond breaking, including both single- and
multireference treatment. The book also discusses improved methods
toward the reduction of computational cost, including MP2-R12 and
Wigner approaches. An overview of the performance of methods in the
prediction of thermochemistry and thermochemical kinetics is discussed.
The book also discusses the development of correlation consistent basis
sets for transition metal species, including a thorough suite of state-of-
the-art benchmark calculations utilizing the newly developed sets; and
covers the rationale as to the most suitable form of the exchange-
correlation energy in density functional theory.
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Chapter 1

Explicitly Correlated Basis Functions for Large
Molecules

Claire C. M. Samson and Wim Klopper

Theoretical Chemistry Group, Debye Institute, Utrecht University,
P.O. Box 80052, NL-3508 TB Utrecht, The Netherlands

The MP2-R12 methods are developed further towards
applications to spatially extended molecular systems. Firstly, a
large auxiliary basis set is employed for the resolution-of-
identity approximation (RI approximation, that is, a closure
relation) such that smaller standard Gaussian basis sets can be
used to expand the wave function. This method yields much
better convergence to the limit of a complete basis of
second-order Moller—Plesset (MP2) theory than the standard
MP2 method using the same correlation-consistent Gaussian
basis sets. Secondly, a new correlation factor of the form
r,zexp(—yr,zz) is investigated, where the Gaussian geminal
dampens the linear r;, term at long interelectronic distances.
Many long-range integrals then vanish, depending on the
magnitude of the adjustable parameter y. Finally, a
similarity-transformed Hamiltonian is investigated using a
correlation function exp(F) similar to the one used for the
new MP2-R12 method.

© 2007 American Chemical Society
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R12 methods: Wave functions linear in ry,

One of the main bottlenecks that is encountered when attempting to find
approximate solutions of the time-independent Schrédinger equation for many-
electron systems is the extremely slow convergence of the computed wave
function towards the ‘exact’ wave function with increasingly large basis sets of
atomic orbitals. This major bottleneck arises from the singularity of the
Coulomb repulsion at electron—electron coalescence. Figure 1 illustrates the
cusp of the He ground-state wave function, which is shown as a function of the
angle between the two electrons located on a sphere of radius 0.5 a,.

0.28
3
2
S
. T —0:19 . : .
-3 -2 -1 0 1 2 3
912

Figure 1. Coulomb hole of the He ground state.
(Reproduced with permission from Molecular Electronic-Structure Theory
p. 262. Copyright John Wiley and Sons Limited.)

In the early days of quantum mechanics (/,2), a drastic improvement of the
description of the electron correlation was obtained when terms depending
explicitly on the interelectronic distances r;; = [ri-r)| were included into the wave
function. Unfortunately, the appearance of such linear r;, terms gives rise to
arduous integrals to evaluate, making basically impossible the application of
these explicitly correlated methods for atoms and molecules with more than four
electrons. During the late 1980’s and early 1990°’s (3,4), however new
developments based on this fundamental concept have occurred (i.e., the R12
methods), which have extended the application range of the explicitly correlated
methods to small and average-sized molecules.

Nevertheless, R12 calculations on very large molecular systems are still
computationally very demanding for the following reasons: Firstly, large basis
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sets should be employed to satisfy the RI approximation. Secondly, the linear r;,
term generates a significant number of large two-electron integrals when ry; is
large, although these integrals don’t contribute to the energy calculation. By
avoiding the computation of these unnecessary integrals, one should be able to
save a considerable amount of computational costs.

Formulation of R12 theory

In the notation of second quantization, the R12 wave function is expressed
as follows:

We =@+ D 601+ 0,07+ 6wy + D A O 4., (1)

»ab ykl ykabe

where @ is the Hartree-Fock determinant, i, j, k, ... denote occupied spin
orbitals, and a, b, c, ... denote virtual spin orbitals contained in the finite spin

orbital basis. The amplitudest_, ¢’ ,... represent the expansion coefficients of the

b2

respective excitations (D:,tb;",‘..Each exited determinant can be written as a

product of annihilation and creation operators as shown for the single
excitations,

O =alad. 2

a,’ ,a ... are creation operators and a,, a,,... are annihilation operators. The only
difference between the R12 expansion of the wave function and the
conventional configuration-interaction (or coupled-cluster) expansion, is the
appearance of a new set of double excitations,

vy =2 (- 15) 252,200, 3)
af

where a, B,... denote virtual spin orbitals outside the finite spin orbital basis
{¢,}. Hence, the union of the two sets of p, q, ... and a, B, ... spin orbitals
represents a complete set,

Zl‘/’p(l))(%(l)liﬂ‘.!% (D)e. ()] =1. @
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The interelectronic distance is introduced into the wave function through the
following two-electron integrals:

r; =<¢u (1)% (z)lrlz|¢k (1)(01 (2)> )

An externally contracted MP2 method

The MP2-R12 method can be regarded as an externally contracted MP2
method with (contracted) double excitations into a complete spin orbital basis.
To illustrate this, we shall in the following discuss an externally contracted MP2
method that comprises contracted double excitations into a subspace {¢,},
which has been orthogonalized against the orbital basis { ¢p},

vm=<v+zt:za>;°+zt:.(2(r:-;.—r;:.')a>:;"*'} ©

1jab ykl p'q’

with

r:«ju' = (¢p‘ (1)%‘ (2)|r|2 |¢k (1)¢| (2» = (p’q'l h2 |kl>' ™

In the following, the latter notation is adopted for simplicity. The only difference
between the conventional MP2 and EC-MP2 wave functions is the appearance
of a new set of double excitations with expansion coefficients t . These double

excitations are spanned by primitive functions @ contracted through the

contraction coefficients (rp'.:. - rp';, ) If the orthogonal subspace would be the true

complementary subspace of the cc-pVnZ basis, the externally contracted MP2
method would be strictly equivalent to the explicitly correlated MP2 method. In
Table I, we compare the valence-shell MP2 correlation energies of H,0O obtained
from the conventional and externally contracted MP2 methods.

The orthogonal subspace used in Table I is spanned by the large basis
O=19s14p8d6fag3h2i, H=9s6p4d3f2g. The number of basis functions of the
large basis that are (nearly) linearly dependent on the cc-pVnZ basis is
drastically increased with the cc-pVnZ basis sets. We observe that the externally
contracted MP2 calculations converge faster to the MP2 limit. As expected, the
energies from the externally contracted MP2 method lie between the standard
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Table 1. Valence-shell MP2 correlation energy (in mE,) of H,O

Basis MP2 + Orthogonal Linearly
subspace dependent

cc-pVDZ -201.6 -231.0 1
cc-pVTZ -261.5 -273.0 7
cc-p VQZ -282.8 -287.3 11
cc-pV5Z -291.5 -293.0 117
Large basis * -296.1

Limit -300.5

a) O=19s14p8d6fdg3h2i, H=9s6p4d3f2g

SOURCE: Reproduced with permission from Quantum-Mechanical Prediction of
Thermo-Chemical Data by Cioslowski, 2001; p.21. Copyright 2001 Kluwer.)

MP2 values and the energy obtained in the (uncontracted) large basis. As the
size of the orthogonal subspace increases the computational effort of the MP2
calculation, the externally contracted MP2 methods does not appear to be a
practicable method. It merely illustrates the explicitly correlated MP2-R12
theory.

Orbital-invariant MP2-R12 method

Contrarily to conventional MP2 theory, the original formulation of MP2-
R12 theory (3,4) did not provide the same results when canonical or localized
molecular orbitals were used. Indeed, for calculations on extended molecular
systems, unphysical results were obtained when the canonical Hartree—Fock
orbitals were rather delocalized (5). In order to circumvent this problem, an
orbital-invariant MP2-R12 formulation was introduced in 1991, which is the
preferred method since then (6),

¥ oprmy =P+ DO+ D¢ (Z(r:; - r;;)d>;;ﬂ), ®)
yab ykl ap
with

§|a)(a|=l—§|p)<p|=1-f>. ©

The matrix elements needed for the evaluation of the MP2-R12 energy can be
computed as follows:
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3 (0F1" 025 = X6k o) 0Bl -1
= (i il (1-R)(1- B, ), [ - k),

where H" represents the perturbation (i.e., fluctuation potential) to the Hartree-
Fock Hamiltonian (i.e., sum of Fock operators). It is difficult to evaluate the
integrals of the type of Eq. 10 since three- and four-electron integrals occur. As
an example, consider

(10)

(iifrs' (1-B)(1-B, )5, k1) = (i x| K1) - Ci| 2B, | 1)

~(ij| 2B, | k1) + (ii| 2B, | K1)

=S S - <Up| T, 23|plk> (n
-Z lJpl mn, | kpl)+ Y (ii|x; [pa) (pa] | kI).
Pq

This inconvenience has been solved by introduction of the resolution-of-identity
(RI) approximation,

(abe] i, |def) = 3" (bl ep)(pelrfef). ()

4

However, the introduction of the RI approximation led to the need for large
basis sets. In old R12 method, only one single basis was used for both the
electronic wave function and the RI approximation. The new formulation of R12
theory presented here uses an independent basis set denoted auxiliary basis set
for the RI approximation while we employ a (much) smaller basis set for the
MP2 wave function (7). This auxiliary basis set makes it possible to employ
standard basis sets in explicitly correlated MP2-R12 calculations.

Examples of R12 calculations
Benchmark calculations of the equilibrium atomization energies (AEs) of

the small molecules CH,, H,0, HF, N,, CO and F, are presented in Table II. The
CCSD(T) calculations are performed in systematically increasing correlation-

In Electron Correlation Methodology; Wilson, A., el al.;
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7

consistent basis sets (cc-pCVnZ, n=2-6) and compared with the R12 results. In
the cc-pCV6Z basis, the mean absolute deviation from the R12 reference values
is 2.2 kJ/mol while it is 1.3 kJ/mol for the experimental AEs (corrected for
vibrational and relativistic effects). The values illustrate that the cc-pCVnZ
results properly converge towards the R12 values, which represent the basis set

limit.

In Table III, we list Ne atom pair energies in mE,. The results obtained with
MP2-R12 theory using an auxiliary basis set coincide with the ‘exact’ atom pair

Table I1. Computed equilibrium atomization energies (AEs) at the
CCSD(T)/cc-pCVnZ level (kJ/mol)

energies. Using this large auxiliary basis is equivalent with computing all three-
electron integrals in an exact manner (8).

2
S
3
8
2y
is
£2
gl e}
[e20e)]
g2 n CH” H,0 HF N, CO  F,  Awd
8 2 693 875 530 841 1013 112 76.8
3 e 3 739 943 574 912 1059 147 25.3
Sy 4 751 964 586 936 1076 153 9.8
g 2 5 755 971 590 946 1081 157 43
S o 6 756 973 592 950 1083 159 2.2
w § R12 757 975 593 954 1086 161
o5 Exptl." 757 975 593 956 1087 163 1.3
o
=k a) 'A, state.
E a b) Mean absolute deviation from R12 reference values.
% g c) Experimental AEs corrected for vibrational and relativistic effects.
=
‘g a Table II1. Ne atom absolute pair energy /mE,
I
oF Pair MP2 MP2-R12%
'— — g
=2 b o . s d) Auxiliary
% E Calc. Extrap. Exact basis ¥
E 2s? 12.00 12.04 12.04 12.04
2 2s2p 86.98 87.19 87.18 87.18
§ 2p2 220.69 220.97 220.95 220.95
Total 319.67 320.20 320.17 320.17

a) In the orbital basis 20s14p11d9f7g5h.

b) 1>12, taken from Ref. 9.

c) Extrapolated for 1 —o, taken from Ref. 9.

d) From Ref. 8.

¢) Using the auxiliary basis 32s24p18d15f12g9h6i.

In Electron Correlation Methodology; Wilson, A., el al.;
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R12 methods augmented with Gaussian geminals

By augmenting the linear correlation factor ry, by a Gaussian geminal of the
form exp(-yr;,), many two-electron integrals become negligible for large
distances between two localized molecular orbitals (Figure 2). The Gaussian

functions dampen a large number of integrals that are arising in large molecular
complexes.

Pn(1) ?a(2)

C )

I

Figure 2. Explicitly correlated basis functions of the form r;; (1) ¢n(2) that
should be avoided in large molecules.

Explicitly correlated Gaussians (ECG) methods have already been
developed earlier (10,11,12) and have been used for accurate calculations on
small molecules. The main difference between these ECG methods and the use
of Gaussian geminals in the framework of R12 theory is that in the latter, their
purpose is to dampen the linear r;, term more than being a correlation factor on
its own.

This new Gaussian function gives rise to five new non-standard two-
electron integrals, whose analytical implementation has recently been descnbed
(13). They can be summarized as two-electron integrals with operators o exp
(~cyr12®) with k = 0,1,2,4 and ¢ = 1 or 2. It is remarkable that none of the five
nonstandard two-electron integrals that arise from the use of the damped r,
factor requires much more effort than the usual two-electron integrals over
Gaussian functions. This indicates that the damped-R12 method will be
practicable for large systems.

We have explored the effect of the adjustable parameter Y on the number of
vanishing integrals corresponding to the operator rj,exp(—yr;;”) by analyzing the
behavnor of a distribution of normalized s-type Gaussians with exponent { = 1

2 These functions are randomly distributed on the surface of a sphere with
radlus R = 2(k—1) a, (Figure 3). The effect of the damping is shown on this
graph by the drastic reduction of significant integrals by about a factor of 10
from no damping to a damping of y = 1.0 a,™ for a distribution of ca. 200 s-type
functions. Moreover, linear scaling is reached for y > 0.1 a,>.

The two main conditions on the damping factor v is that it should be large
enough to remove as many integrals as possible while small enough to retain the
accuracy of the calculation. The optimum value for y is yet to be determined.

In Electron Correlation Methodology; Wilson, A., el al.;
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N
)

-
(6}
L

e
(2]

—nu

Number of intergrals /10 ©

o

0 100 200 300 400
number of s-type Gausslans

Figure 3. Number of significant integrals (>107" a.u.) for y=00 a,” (crosses),

y=0.05 a,” (dots), y=0.1 ay? (triangles), y=1.0 ay (squares). The dashed line

corresponds to the theoretical number of n'/8 integrals and the dotted line
represents the number of significant electron-repulsion integrals.

The aim of this new correlation factor is to associate it with a localization
procedure such that it will be possible to predict the vanishing integrals
beforehand from the distance between the localized molecular orbitals. This
method will allow us to minimize the computational costs considerably since the
long-range two-electron integrals represent the major part of the integrals to be
computed in a large molecular system. Therefore, this new method in
conjunction with auxiliary basis sets for the RI will make it possible to use R12
methods on much larger molecules than is possible today.

Similarity-transformed Hamiltonian

The aim of our similarity-transformed Hamiltonian is to improve the
computation of the correlation energy of conventional configuration-interaction
(CI) calculations. In this framework, the conventional wave function is
multiplied by the correlation function (/4,15,16)

¥ =exp(F)®, (13)

with @ the standard Cl-type expansion (i.e, a linear combination of orbital
products) and F a correlation function. Since now the required integrals are

In Electron Correlation Methodology; Wilson, A., el al.;
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available from the newly developed R12-methods, we found it interesting to
investigate the following correlation function:

F=Y ¢, 27 =3¢, > nexp(-1.5 ), (14)

9 9

where ¢, and y,, are adjustable parameters.
The Schrédinger equation multiplied by exp(—F) from the left becomes:

exp (~F) Hexp (F) ® = E®, thatis, H'® =EQ. (15)

HF is the non-Hermitian similarity transformed Hamiltonian.

The implementation of the above described correlation function is described
in detail in Ref. (/7). Figure 4 illustrates the efficiency of the method for the He
ground-state energy as a function of the basis sets. Already for basis sets with s-
and p-functions, the similarity-transformed Hamiltonian shows a better accuracy
than the conventional CI method.

1000000 -
100000 -
10000 -

1000 -

AE/pE,

100 -
10 1

1 T T T T T T T ,

Figure 4. Calculations of the He ground-state energy in subsets of a
19516p14d12f10g8h6idk basis, y=0, c=1/2. The circles represent the similarity-
transformed results and the triangles the conventional results.

In Electron Correlation Methodology; Wilson, A., el al.;
ACS Symposium Series; American Chemical Society: Washington, DC, 2007.



Downloaded by TECHNISCHE UNIV MUENCHEN on October 23, 2009 | http://pubs.acs.org

Publication Date: March 13, 2007 | doi: 10.1021/bk-2007-0958.ch001

11
Conclusions

The recent developments in R12 methodology (auxiliary basis sets,
damping procedure) seem promising to investigate large molecular systems in
the future. All the mentioned methods are implemented in the Dalton (/8)
source code.

The similarity-transformed Hamiltonian method has so far been applied
only to two-electron systems. Using closure (i.e, RI) approximations, this
technique will be generalized to many-electron systems (/6).
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Chapter 2

Uniform Density Limit of Exchange-Correlation
Energy Functionals

John P. Perdew, Jianmin Tao, and Stephan Kiimmel

Department of Physics and Quantum Theory Group, Tulane University,
New Orleans, LA 70118

We present theoretical and practical reasons why a density
functional for the exchange-correlation energy should be
essentially exact in the uniform density limit. In this limit, the
exchange energy is known exactly, and the correlation energy
is known to within less than 1 millihartree in the range of
valence-electron or lower densities. Some density functionals
perform well in this limit, while others do not. Functionals
with many parameters fitted to chemical data tend to fail in
this limit, and also for real solids. The spin resolution of the
correlation energy of the spin-unpolarized uniform electron
gas seems simple but unlike that of the widely-used ansatz of
Stoll et al., and its low-density limit brings a surprise: a
positive parallel-spin contribution in the spin-unpolarized
case.
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Why the Uniform Density Limit?

The first density functional for the exchange-correlation energy was the
local spin density (LSD) approximation [1, 2]
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ESPIm,n,]= [d°r n(r)e, (ny (r),m, (1)), M

where ¢,.(n,n,) =€, +¢_is the exchange-correlation energy per particle of an
electron gas with uniform spin densities ny and ;. This was for decades (and
to some extent still is) the standard approximation for electronic structure
calculations in condensed matter physics. The generalized gradient
approximation (GGA) [3-10]

EgGA[nT,m]: Idsrf(nf,n¢,V”1,V”¢) 93]

made density functional theory popular in quantum chemistry as well. More
recently, meta-GGAs [11-16]

Eg*CAlny,n, )= jd3r f(np,ny Vi, Vn, Vin, Vo0, ,00,7)  (3)

have been developed, where

f (=2 3 (Vi O @

is the kinetic energy density of the occupied Kohn-Sham orbitals of spin o.
Hybrid functionals [17-24], which superpose the GGA or meta-GGA form with
a fraction of exact exchange, approach chemical accuracy at modest
computational cost.

The uniform density limit for any of these functionals is easily evaluated:
Justset Vn, = O,Vzn, =0,

tg =_136(6n2 2/3nj/3, (5)

And EZ** = ESP . (We use atomic units with energies in hartree and distances
in bohr.) The first GGA’s (other than Ref. 3) and the first hybrid were designed
to be right in the uniform density limit. But some recent functionals have been
constructed semi-empirically by fitting to chemical data, and the uniform
density limit has been sacrificed to improve the fit.

We argue that the uniform density limit is an important theoretical
constraint which should not be sacrificed in a functional that needs to be
universal. The density functionals discussed here can be exact only for uniform
densities. Approximations ought to be exact in those limits where they can be.
Moreover, the unexpected success of LSD outside its formal domain of validity
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(very slowly-varying densities ny(r)and n,(r)) has been explained [22,25-27]
by the fact that LSD inherits exact constraints on from its underlying model
system, the uniform gas, and these constraints plus others have been used to
construct non-empirical GGA’s [8, 9, 28] and meta-GGA’s [16].

On the practical side, we note that nature provides a number of extended
systems like solid metals [29, 30], metal clusters [31], and semiconductors [30,
32]. These systems have much in common with the uniform electron gas, and
their ground-state properties (lattice constants [29, 30, 32], bulk moduli [29, 30,
32], cohesive energies [29], surface energies [30, 31], etc.) are typically
described much better by functionals (including even LSD) which have the right
uniform density limit than by those that do not. There is no sharp boundary
between quantum chemistry and condensed matter physics. A good density
functional should describe all the continuous gradations between localized and
delocalized electron densities, and all the combinations of both (such as a
molecule bound to a metal surface a situation important for catalysis).

Recent work [16,19-21] suggests that functionals which respect the uniform
density limit and other exact constraints can still achieve high accuracy for
molecules. Just as the empirical electron-ion pseudopotentials of the 1960’s
have been replaced by non-empirical ones, we expect that the empirical density
functionals of the 1990’s will be replaced by ones that are fully or largely non-
empirical.

What is Known About the Uniform Density Limit?

The uniform density limit has been well-studied by a combination of
analytic and numerical methods. This section will review some (but not all) of
what is known about it.

Define the density parameter r, as the radius of a sphere that on average
contains one electron:

4 1
anf == where n=n, +n,, 6)
and the relative spin polarization { as
n.—n
g:% (-1 <0). ™

In the high-density (r;— 0) limit, exchange dominates over correlation:
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: 6‘xg:( ’Q)
rl,l—wg( 0 =1. ®)

In the low-density limit (», — ), correlation and exchange are of comparable
strength, and are together independent of (. &, is then nearly equal to the
electrostatic energy per electron of the Wigner crystal [33-36]:

Exe18) )96 ©)
noog (r,0= 0)

The exchange energy is known exactly:

3 (9 ”31 4/3 4/3
Q)= | S[0+0"+0-0" ), a0

so that

0.458165
(r,§=0)=—""" ¢ (r,,)=2"¢,(r,,0). (11

s

Since the uniform electron density is perfectly neutralized by a rigid uniform
positive background, the total energy per electron of the uniform gas is just £ +
€xc, Where the non-interacting kinetic energy is

G c)=i(?—’—‘]2/31[(l+c)m+(1-c;)5’3]/r2 12
004 ) 2 °

The correlation energy ¢, is known analytically in the high-and low-density
limits. For typical valence electron densities (1 < r; < 10) and lower densities
(r, > 10), it is known numerically from release-node Diffusion Monte Carlo
studies [33]. Various parametrizations have been developed to interpolate
between the known limits while fitting the Monte Carlo data. The first, simplest
and most transparent is that of Perdew and Zunger (PZ) [34]:

gc(’:nc =0)=
0.03111n7, —0.048+0.0020r, In7, —0.0116r, (r,<1)
or  —0.1423/(1+1.0529,fr, +0.3334r,), (r,21) (13)
& (r,=1)=
0.01555 Inr, —0.0269+0.00077, Inr, —0.0048~, (r, <I)
or  —0.0843/(1+1.3981,/r, +0.2611r,), (r,21) (14)
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£.(7,6) = & (r;, 0) + f (O)l £ (r,, 1) - &.(r,, 0)], (15)

where an exchange-like interpolation between { =0 and { = 1 is employed:

(1+C)4/3 +(1_C)4/3 -2

24/3_2 (16)

f@Q=

Note in Eqgs. (10), (13) and (14) the appearance of two length scales: 7, is the
radius of the exchange hole, and \/Z is the Thomas-Fermi screening length.
Egs. (13) and (14) have artificial discontinuities in their second derivatives with
respect to r; at r, = 1. The discontinuity was removed and a more realistic (-
dependence was introduced by Vosko, Wilk and Nusair [35] (VWNS, in the
parlance of the Gaussian molecular code). A form simpler than VWNS5 and
containing additional information about the high-density limit was proposed by
Perdew and Wang (PW92) [36], and another parametrization was made recently
by Filatov and Thiel (FT) [37].

The first line in Tables I and II presents the PW92 values of e.(r,, {) for (=0
(Table I) or 1 (Table II) at =1, 2, 5, 10. The next three lines show that,
remarkably, VWNS, FT, and PZ never differ from PW92 by more than 0.2
millihartrees.

Analytic or semi-analytic many-body methods provide an independent
estimate of ¢,(r;,{). Before the Diffusion Monte Carlo work, the best calculation
was probably that of Singwi, Sjdlander, Tosi and Land (SSTL) [38] which was
parametrized by Hedin and Lundqvist (HL) [39] and chosen as the { = 0 limit of
Moruzzi, Janak and Williams (MJW) [40]. Table I shows that HL agrees within
4 millihartrees with PW92. A more recent calculation along the same lines, but
with a more sophisticated exchange-correlation kernel [42], agrees with PW92
to better than 1 millihartree.

The correlation energy can also be found from an approximate self-energy.
An early example of this approach was the Gunnarsson-Lundqvist (GL) [41]
parametrization, which shows larger deviations (up to 10 millihartree) from
PW92 in Tables I and II. Recent and more sophisticated examples [43,44] agree
within 2 millihartree with PW92,

The random phase approximation (RPA), to which the SSTL approach
reduces when the exchange-correlation kernel is set to zero, is the simplest
approximation that is right for the Inr,, term in the high-density limit of Egs.
(13) and (14). Tables I and I show that three parametrizations of RPA all agree
rather well for 1 < r; < 10, although only PW92 gives the correct r; — oo limit
of RPA. The first GGA [3] was an RPA functional. RPA itself is not a good
approximation, but it has the interesting feature that corrections to full RPA may
be described especially well by LSD or GGA [45].
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Table I: The essentially-exact PW92 exchange-correlation energy per
electron (in hartree) in a spin-unpolarized ({ = 0) uniform electron gas of
density parameter r, (in bohr), and the deviation (in hartree) of other
approximations from PW92, [1 hartree = 27.21 eV = 627.5 kcal/mol.]

Publication Date: March 13, 2007 | doi: 10.1021/bk-2007-0958.ch002

=0, re= 1 2 5
g"":‘m [36] -0.5180 -0.2739 -0.1198 -0.0644
VWNS5 [35] -0.0002 0.0000 -0.0001 -0.0001
FT [37] -0.0001 -0.0001 0.0000 0.0000
PZ [34] 0.0002 -0.0003 -0.0001 0.0000
MJW HL [40,39] -0.0027 -0.0036 -0.0033 -0.0024
GL [41] -0.0142 -0.0097 -0.0045 -0.0017
RPA (VWN) [35] -0.0195 -0.0176 -0.0149 -0.0124
RPA (PW92)[36] -0.0189 -0.0 170 -0.0143 -0.0121
RPA (VBH) [2] -0.0187 -0.0174 -0.0141 -0.0106
W [46,47] 0.0098 -0.0001 -0.0062 -0.0061
x-only (- g:wsz) 0.0598 0.0448 0.0282 0.0186
BLYP [6,7] 0.0204 0.0178 0.0148 0.0111
B3LYP [18] 0.0128 0.0111 0.0091 0.0066
HCTH [10] -0.0118 0.0017 0.0060 0.0054
VS98 [13] 0.0043 0.0092 0.0086 0.0065
BGGAI [24] 0.0298 0.0234 0.0153 0.0104
BGGA2 [24] 0.0175 0.0137 0.0090 0.0062
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Table II: The essentially-exact PW92 exchange-correlation energy per elec-
tron (in hartree) in a spin-polarized ({ = 1) uniform electron gas of density
parameter 7, (in bohr), and the deviation (in hartree) of other approxima-

tions from PW92. [1 hartree = 27.21 eV = 627.5 kcal/mol.]

=1, r,= 1 2 5 10
752 [36] -0.6089 03125 -0.1309 -0.0682
exc _gl’cW92 .

VWNS [35] 0.0001 0.0000 0.0000 0.0000
FT [37] 0.0002 0.0000 -0.0001 0.0000
PZ [34] -0.0001 -0.0002 -0.0001 0.0000
MIW [40] -0.0096 -0.0098 -0.0089 -0.0072
GL [41] -0.0196 -0.0149 -0.0090 -0.0052
RPA (VWN) [35]  -0.0203 -0.0186 -0.0157 -0.0131
RPA (PW92)[36]  -0.0202 -0.0185 -0.0156 -0.0130
RPA (VBH) [2] -0.0203 - 0.0185 -0.0156 -0.0130
W [46,47] - - - -

x-only 7% 0.0316 0.0239 0.0154 0.0105
BLYP [6,7] 0.0316 0.0239 0.0154 0.0105
B3LYP [18] 0.0217 0.0158 0.0095 0.0060
HCTH [10] -0.0292 -0.0083 0.0013 0.0028
VS98 [13] -0.0094 0.0007 0.0043 0.0040
BGGAI [24] 0.0296 0.0238 0.0161 0.0112
BGGA2 [24] 0.0259 0.0205 0.0137 0.0094
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How Do Energy Functionals Perform in the
Uniform Density Limit?

As Tables I and II show, any functional that reduces to PW92, VWNS, FT
or PZ in the uniform density limit is correct in that limit. The list of such
functionals includes (a) LSD with these inputs, (2) the correlation GGA’s P86
[5] (which reduces to PZ) and PW91 [8] or PBE [9, 28] (which reduce to
PW92), when used with the exchange GGA’s PW86 [4], B88 [6], PW91 [8], or
PBE [9, 28], (3) the FT [14], PKZB [15], and PT [16] meta-GGA’s (which
reduce to FT and PW92, respectively), and (4) the three-parameter Becke hybrid
B3PW91 [17], and the one-parameter PBE hybrid [19-21].

Some LSD calculations for solids are still performed with the MJW (HL),
GL, and RPA (VBH) parametrizations, or even with the Wigner (W) [46, 47]
approximation of 1934. Tables I and II show the extent to which these
parametrizations are not proper LSD input.

The deviation of the exchange-only (x-only) approximation &,(r,, {) from

etV (r,,0) is —eP¥*(r,,£), the magnitude of the PW92 correlation energy,

XC

which is also shown in Tables I and II. Although the correlation energy for 1 <r;
< 10 is somewhat smaller than the exchange energy, correlation makes a key
contribution to the atomization energies of molecules, the cohesive energies of
solids, and the surface energies of metals. Thus the size of any other deviation
from PW92 is large to the extent that it is comparable to the magnitude of the
PW92 correlation energy, and so the deviations shown in Tables I and II should
be compared to ¢, and not to &,..

The BLYP [6, 7] and B3LYP [18] functionals are widely and successfully
used in quantum chemistry. But, as Tables I and II show, they fail seriously in
the uniform density limit, where they underestimate the magnitude of the
correlation for { = 0 and even more for { = 1 (where BLYP reduces to the
exchange-only approximation). For uniform densities, B3LYP reduces to a
peculiar combination of 81% LYP and 19% RPA (VWN).

The functionals BLYP {6, 7], HCTH [10] and V598 [13] are all successful
for molecules but display serious errors (often much worse than true LSD errors)
for solids [29-32]. The same problems can be expected for B3LYP [18], and for
BGGAL1 [24], (a GGA hybrid) and BGGA2 [24] (a meta-GGA hybrid). Note
that some of these are heavily parametrized empirical functionals, with 18
(HCTH), 20 (VS98), and 10 (BGGA1, BGGA2) empirical parameters. For the
heavily empirical functionals, even the exchange energy is not exact in the
uniform density limit, as Table III shows.
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Table III: The ratio of approximate to exact exchange energy per electron
of a uniform electron gas. For the approximations listed in Tables I and II
but not listed here, this ratio is exactly 1. The Becke-Roussel exchange
functional is a non-empirical meta-GGA based upon the hydrogen atom.

P (1, 0)/ €5 (1,,6)

HCTH [10] 1.093
VS98 [13] 1.053
BGGAI [24] 1.010
BGGA2 [24] 1.006
Becke-Roussel [12] 0.974

Spin Resolution of the Correlation Energy in the
Uniform Density Limit

The correlation energy e can in principle be resolved as a sum of
contributions from 11, ||, and 1] pair correlations. Such a resolution even in the
uniform density limit, is not really needed for the construction of density
functional approximations, and no assumption about the spin resolution has been
made in any of the functionals from our research group (which are all correct by
construction in the uniform density limit).

Spin resolution is however built into Becke’s correlation functionals [22,
23, 24], and into many others [10, 13, 48] that have been patterned thereon.
Typically these functionals rely upon the ansatz of Stoll et al. [49, 50] for the
antiparallel- or opposite-spin contribution to the correlation energy:

Stoll: EP’[ny,n ] = E [ny,n,]- E [n,0]- E [0,n, ], an
which is applied to the uniform-gas input to yield
e (r,4=0) | &Q2"r,5=1)
£(r,0=0) &.(r,,6=0)

as the fraction of { = 0 uniform-gas correlation energy arising from antiparallel
spin pairs. The corresponding ratio for { = 1 vanishes, of course.

Thus it is of some interest to know if the Stoll ansatz is correct, especially
since several other ansitze have been developed and used as input to a spin-
resolved pair correlation function. For example, Perdew and Wang (PW)
[51, 52] proposed a scaling relation

im(_’s’C_zo)Jl-z-w £.(r,6=1 (19)

Stoll: (18)

PW: ’
£(r,,£=0) &.(r,,£=0)
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Table IV: Spin resolution &:*°(r,,§ = 0)/g.(r,,§ = 0) of the correlation
energy of the spin-unpolarized uniform electron gas, in various approxima-
tions described in the text. Shown are estimates for the fraction of the
correlation energy arising from antiparallel- or opposite-spin correlations.
The GSB value is the best estimate here.
=0, r= 1 2 5 10
GSB [55,56] 0.66 0.68 071 0.73
SKTP [53] 070 070 0.69 0.68
PW [51,52] 0.58 058 057 055
FT [37] 054 055 056 0.56
Stoll [49,50] 0.52 052 0.52 0.51

while Schmidt, Kurth, Tao and Perdew (SKTP) [53] proposed a different scaling
relation

R
Sc(’;aC;:O) gc(':v’§=0)’

and Filatov and Thiel [37] proposed

o EP,L0)
£.(r,,6=0) @1

1+exp| —1.429r2 /(JF, +2.072r,)? -
Jr.

Table IV compares Egs. (18)«21) (using PW92 input) with Monte Carlo
data [54] as fitted by Gori-Giorgi, Sachetti and Bachelet (GSB) [S5, 56], which
we take to be the standard of accuracy here. (The GSB data were kindly
provided by Dr. Gori-Giorgi.) In the range 1 < r, < 10, the Stoll decomposition
(18) and Eq. (19) seem inaccurate in comparison with the SKTP of Eq. (20), as
pointed out by GSB, and so does Eq. (21).

The exact high- and low-density limits can be found from arguments given
in Ref. [57]. For { = 0 in the high-density limit (where the random phase
approximation becomes exact), the parallel-spin and anti-parallel-spin
correlation energies are equal [57], so

SKTP:

lim 207,62 0)/ (7,6 =0) = @2)

In the low-density limit, the parallel-spin and anti-parallel-spin exchange-
correlation energies are equal [57] because this is a classical limit in which spin

In Electron Correlation Methodology; Wilson, A., el al.;
ACS Symposium Series; American Chemical Society: Washington, DC, 2007.



Publication Date: March 13, 2007 | doi: 10.1021/bk-2007-0958.ch002

Downloaded by TECHNISCHE UNIV MUENCHEN on October 23, 2009 | http://pubs.acs.org

23

does not matter, and this observation plus Eq. (9) leads to the conclusion

lim £°(r,, = 0)/ £, (r,,§ =0) = 1.02. @3)

(But see the caveat of footnote 37 of Ref. [57].) To derive Eq. (23), note that
(for { = 0 and r, —» ) £ =g =¢, /2=(1.96¢,)/2=0.98¢, , while
£, =6, —&,=096¢,.

Eq. (23) is at first surprising, since it implies that the parallel-spin
correlation energy for { = 0 is slightly positive [-0.02e,(rs, § = 0)] in the low-
density limit. But this cannot be ruled out, since the total correlation energy is of
course properly negative. Egs. (22) and (23) are at least consistent with the
increase with r, of the GSB ratio €. (r,,; =0)/&(r,,§ =0), as shown in Table
Iv.

Only the Stoll and FT expressions display the proper r, — 0 limit, but
neither of these expressions seems correct in the range 1 < r, < . With a
satisfactory spin resolution of the correlation energy, it should be possible by the
approach of Ref. [57] to construct a satisfactory spin resolution of the pair
correlation function of the uniform gas at all r; (or by the approaches of Refs.
[49] and [53] for most , of interest). We note that the formula

£ (1,6 =0) _0.5+A4\r, +1.02Br,
e(rn6=0)  1+CJr +Br,

has the expected limits, and is accurately fitted to the GSB data for 0.8 <r,< 10
when A=1.996, B=0.1785, C=2.857. The form of Eq. (24) is motivated by the
Perdew-Zunger expressions of Eqgs. (13) and (14).

For the total correlation energy & (s, £), so much is known about the r,— 0
and r;, — o no limits that accurate values for all r; and { can be found by
interpolation [58], without ever using the Monte Carlo or other data. For the spin
resolution & (r,,5)/€,(r,,&), however, so little is known about these limits
that we must and do rely on the Monte Carlo data. The spin resolution of Eq.
(24) has recently been generalized to all £ [59].
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Chapter 3

Self-Consistent Hartree-Fock—Wigner Calculations:
A Two-Electron-Density Functional Theory

Darragh P. O’Neill and Peter M. W. Gill

Department of Physical Chemistry, University of Nottingham,
University Park NG7 2RD, United Kingdom

We recently presented a correlation method based on the
Wigner intracule, in which correlation energies are calculated
directly from a Hartree-Fock wavefunction. We now describe
a self-consistent form of this approach which we term the
Hartree-Fock-Wigner method. The efficacy of the new scheme
is demonstrated using a simple weight function to reproduce
the correlation energies of the first- and second-row atoms
with a mean absolute deviation of 2.5 mE;,

Introduction

The electron correlation problem remains a central research area for
quantum chemists, as its solution would provide the exact energies for arbitrary
systems. Today there exist many procedures for calculating the electron
correlation energy (/), none of which, unfortunately, is both robust and
computationally inexpensive. Configuration interaction (CI) methods provide a
conceptually simple route to correlation energies and a full CI calculation will
provide exact energies but only at prohibitive computational cost as it scales
factorially with the number of basis functions, N. Truncated CI methods such as
CISD (M cost) are more computationally feasible but can still only be used for
small systems and are neither size consistent nor size extensive. Coupled cluster
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(CC) methods, which have largely superseded CI methods, in the limit can also
be used to give exact solutions but again with same prohibitive cost as full CI.
As with CI, CC methods are often truncated, most commonly to CCSD (N
cost), but as before these can still only be applied to systems of modest size.
Finally, Moller-Plesset (MP) perturbation theory, which is usually used to
second order (MP2 has a N’ cost), is more computationally accessible but does
not provide as robust results.

We have recently introduced the Wigner intracule (2), a two-electron phase-
space distribution. The Wigner intracule, W (u, v), is related to the probability of
finding two electrons separated by a distance » and moving with relative
momentum v. This reduced function provides a means to interpret the
complexity of the wavefunction without removing all of the explicit multi-body
information contained therein, as is the case in the one-electron density.

Electron correlation is inherently a multi-electron phenomenon, and we
believe that the retention of explicit two-electron information in the Wigner
intracule lends itself to its description (3). It has been well established that
electron correlation is related to the inter-electronic distance, but it has also been
suggested (4) that the relative momentum of two electrons should be considered
which led us to suggest that the Hartree-Fock (HF) Wigner intracule contains
information which can yield the electron correlation energy. The calculation of
this correlation energy, like HF, formally scales as N

Although the HF Wigner intracule can be used to estimate correlation
energies, the resulting energy is not variational with respect to the molecular
orbital (MO) coefficients, so gradients, which are needed to perform geometry
optimizations and frequency calculations, are complicated. The calculation of
such gradients is made more straightforward when using a set of MOs which
have been self-consistently optimized taking the corrections due to the
correlation energy into account. A self-consistent scheme such as this, which we
term the Hartree-Fock-Wigner (HFW) method, will now be described.

Theory

We have recently proposed (3) that the correlation energy can be estimated
from equations of the form

E= I IWHF (u,v)Gyr (4, v)dudv )
0
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where Wy (4, v) is the Wigner intracule derived from a HF wavefunction and
Gyr (u, v) is a weight function. If the MOs are expanded within a basis set, the
correlation energy becomes

1
= [BuBo - BBy~ BLEL [(h0)g @

Zpﬂa

Ec

where P and Plﬂ, are elements of the o and B HF density matrices, P,, is an

element of the total HF density matrix P,, = P, +Pf, and (uvdo)g is the 10-
dimensional correlation integral

(W10 == [+ D (r+a+ W +)
xv? j,(qv)G(u,v)drdqdudv

3

where ¢(r) is a basis function and ji(x) is the zeroth-order spherical Bessel
function (35).
The HF energy is given by

uvio

EHF = ZP/JVHAIV +% Z [Pva/la' - :a v?l —P;ﬂag](ﬂvlﬂa) 4)
uv

where (,uv]ﬂa) are the usual Coulomb integrals. This expression may trivially
be combined with equation 2 to yield the HFW energy

EHFW = Z vaHyv
v

&)

1

+= Y [ BuPio = BB~ Pl BA [ (VA0
uvio

where (plelo‘)HFw =(/JVI/10')+(/1V/10')GandP”V is no longer a HF density
matrix element but rather a density matrix element obtained when a self-
consistent calculation is performed with the inclusion of the Wigner
perturbation.

When implementing the HFW method the extra computational cost incurred
is that of evaluating and digesting the correlation integrals. The details (6) of
calculating the (u#vAc); integrals depends on the choice of G(u, v), and zm this
work gaussian weight functions in wuv and u, G(u,v) =Ae™*" and

G(u,v)= Be™™ , were chosen as these permit the 10-dimensional correlation
integral (equation 3) to be reduced to a one-dimensional integral in . The
remaining integration is then performed by quadrature (6). Several quadrature
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schemes have been explored to approximate this final integral and it has been
found that the recently introduced MultiExp grid (7) is particularly efficient. The
form of the integrand is suitable for use with this grid as it is the product of a
power, a gaussian and a modified spherical Bessel function (5) in », and can be
approximated well by a sum of exponentials which MultiExp integrates exactly.

The digestion of the HFW integrals differs from that of HF integrals as the
(uvAo) integrals possess lower permutational symmetry than their HF
counterparts. Correlation integrals, like the Wigner integrals which make up the
Wigner intracule and unlike the conventional Coulomb integrals, have only
four-fold permutational symmetry (8)

(uvAo)g =(vuod)g = (0Avp)g =(Aopuv)g
(uvod)g =(vudo)g =(cAuv)s =(Aovi)g

and hence an HFW calculation is roughly twice as expensive as the same HF
calculation. When the HFW integrals are being assembled, clearly we do not wish to
compute the Coulomb integrals twice, so care must be taken to combine the correct
Coulomb and correlation integrals. It should also be pointed out that a negligibly
small Coulomb integral does not imply that the corresponding correlation integral is
negligibly small, so we currently evaluate all of the HFW integrals. A cutoff
criterion for discarding correlation integrals, analogous to the Schwarz inequality for
Coulomb integrals, would be a desirable tool and is being investigated (9).

After the HFW integrals have been assembled, we then move on to the self-
consistent field (SCF) procedure. For the most part this is the same as the HF
version (/0), with the exception of constructing the Fock matrix. The Fock
matrix elements for an unrestricted HFW calculation are analogous to their HF
counterparts and are given by

6

F:u =H ;:m + Z Py, (uVAG )y — Pio (HAVO )ypy @)
Ao

F ,ﬂ, =H +) Py (UVAG)ypy — P2 (WAVO)py 8)
Ao

The method usually employed to build the Fock matrix is an integral-driven
algorithm in which each integral contributes to six elements of the Fock matrix.
Due to the lower symmetry of the HFW integrals, each one contributes to only
four elements of the Fock matrix. For a given integral (4vAo),p, the upper or
lower diagonal of the a Fock matrix is built up as follows

F/Jav = F:v + Pla(#Vla)‘HFW
Ff =Ff + P, (4VAG )y,
Fp =F2 + Pa(UVAC) gy

®

w=Fa+ Pa (#Vflo')HFw
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where the prime indicates that the integrals have been scaled by the number of
permutationally equivalent integrals and then by 4. After this Fock matrix is
calculated it must be corrected by multiplying the diagonal elements by a factor
of two. The § Fock matrix is constructed analogously.

Results

Currently the Hartree-Fock-Wigner method is implemented as a standalone
program, but work is underway to integrate this method into the Q-Chem (//)
package. Using a gaussian weight function, (uvig)g has been formulated for all
s- and p-type basis functions, and is readily extensible to functions of higher
angular momentum. The results that will be considered are those for a G(u,v)
which aims to reproduce the energies of the atoms of the first and second rows.
To accomplish this, the four parameters, 4, B, { and #, in the gaussian weight
function G(u,v) = A +Be™™ will be fitted.

We have found that the Wigner intracule is quite insensitive to basis set size
and we expect the derived correlation energies to be similarly insensitive. In
stark contrast to the post-HF methods mentioned in the introduction, we expect
similar Wigner correlation energies from both moderate and large basis sets and
thus estimates (made using accurate experimental and theoretical data) to the
exact non-relativistic correlation energies (/2) are used in the fitting routine. The
Hartree-Fock energy, however, is much more sensitive to basis set so the target
of the HFW method will be to calculate the sum of the Hartree-Fock energy for
a given basis set and the “exact” correlation energy.

We will now examine the results obtained when the parameters of G(u,v)
are optimized for both non-SCF Wigner correlation and HFW using the 6-311G
basis set. The parameters were optimized using the BFGS quasi-Newton method
given in ref (13). The two resulting weight functions are as follows

Giup (4,v) = =0.135433¢ 0 30%08™ 0004183697245 (1)
Giapw (#,v) = =0.1354106 235715V 4 0.004232¢°34%6%° (1)

Table I shows the energies obtained when non-SCF and HFW calculations
are performed using each of the functions given in equations 10 and 11.
Excellent agreement is seen between the exact and calculated values when using
the appropriate function for a given calculation type, with mean absolute
deviations of 2.6 mE, and 2.5 mE,, and the maximum absolute deviations being
6.8 mEj, and 7.1 mE, in the case of the nitrogen atom.
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Table I: Errors in Non-SCF and HFW Energies °

Calc. Type Non-SCF HFW

Function Type® Total’ Gur Grrw Gyr Gurw
He -2.9019 -0.8 -0.8 -0.8 -0.8
Li -7.4096 0.8 0.7 1.0 0.9
Be -14.6662 -0.7 -0.7 -0.6 -0.6
B -24.6519 0.6 0.6 0.6 0.7
C -37.8424 3.1 33 32 33
N -54.5863 6.8 7.0 6.9 7.1
(0] -75.0604 -0.6 0.4 -0.5 -0.3
F -99.7186 -4.0 -39 -39 -39
Ne -128.9130 -6.2 6.3 -6.1 -6.2
Na -162.2416 =3.7 —4.1 -3.0 -34
Mg -200.0448 2.6 2.1 2.9 2.4
Al -242.3396 3.0 25 33 2.8
Si -289.3528 2.1 1.8 23 2.0
P -341.2476 2.1 2.1 23 2.3
S -398.0999 2.3 -2.0 -2.1 -1.8
Cl -460.1355 =33 2.7 -3.2 -2.5
Ar —527.5287 1.0 1.9 1.2 2.1
Mean*’ 2.6 25 2.6 2.5
Max® 6.8 7.0 6.9 7.1

4 Total energies in £h and errors in mE,
®From equations 10 and 11

¢ Sum of HF/6-311G and exact correlation energies
9 Mean Absolute Deviation

¢ Maximum Absolute Deviation
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Table II: Errors in HFW/STO-3G Energies*

Total’ HFW
He —2.8498 -0.6
Li -7.3609 5.3
Be -14.4462 -0.2
B -24.2738 0.5
C -37.3548 1.9
N -53.9073 5.0
o -74.0621 -13
F -98.311 -3.1
Ne -126.995 -33
Na -160.064 20.2
Mg -197.4456 17.4
Al -239.328 11.8
Si -285.9712 4.1
P -337.409 -0.2
S -393.735 -1.7
cl —455.2082 -9.1
Ar -521.945 6.9
Mean® 5.8
Max? 20.2

“ Total energies in E, and errors in mEy

b Sum of HF/STO-3G and exact correlation energies
€ Mean Absolute Deviation

4 Maximum Absolute Deviation

As expected only minor differences are seen between the results obtained
when the correct and incorrect fits are used for each calculation type and this is
reflected in the similarity of the weight functions.

We predicted above that the Wigner correlation energies should not be very
sensitive to the basis set used. The validity of this will now be examined. Table
II shows the result of using the HFW weight function optimized for the 6-311G
basis set applied to the STO-3G basis set. Again, we cannot expect to reproduce
the HF/6-311G energy at the STO-3G level so the total energies now use the
HF/STO-3G energy add to the exact correlation energy. Good agreement is seen
with the mean absolute deviation increasing to 5.8 mE, and the maximum
absolute deviation being 20.2 mE,, in the case of the sodium atom.

To investigate the magnitude of the effect that the inclusion of the
correlation integrals has, we will look at the change in the density matrix. It is
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expected that the change induced on going from HF to HFW will be small so the
ratio of a HF density matrix element to its HFW counterpart should be close to
unity. Because the maximum deviation in energy occurs in the case of the N
atom, it has been chosen to exemplify the change in the density matrix. Our
prediction that the induced change will be small is correct with the largest
deviation from unity being 0.9854 in the case of the most diffuse p-functions.

Conclusions

We have described a self-consistent field method for calculating correlation
energies based on the Wigner intracule. This method involves a perturbation to
the usual two-electron integrals. The implementation of this method is very
similar to the HF method and complications arise only from the calculation of
the new correlation integrals and from the low permutational symmetry of the
HFW integrals. It has been shown that HFW, using a simple weight function,
can accurately estimate the correlation energies of the first- and second-row
atoms with a mean absolute deviation of 2.5 mE;. This weight function is used
only to highlight some of the features of this new method and we are investing
much effort into findings forms of G(u,v) which work more generally. We are
considering spin-separated weight functions as it is known that the majority of
the correlation energy arises from pairs of electrons with opposite spins. Hence,
we use one weight function for the parallel-spin intracule and another for the
antiparallel-spin intracule. This a straightforward extension of the method
described above. Work is also underway to see how derivatives from the HFW
method perform when used to optimize geometries and calculate vibrational
frequencies (/4).
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Chapter 4

New Alternatives for Accurate Electronic Structure
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The method of moments of coupled-cluster equations
(MMCC) is extended to potential energy surfaces involving
multiple bond breaking by developing the quasi-variational
(QV) and quadratic (Q) variants of the MMCC theory. The
QVMMCC and QMMCC methods are related to the extended
CC (ECC) theory, in which products involving cluster
operators and their deexcitation counterparts mimic the effects
of higher-order clusters. The test calculations for N, show that
the QMMCC and ECC methods can provide spectacular
improvements in the description of multiple bond breaking by
the standard CC approaches.

Introduction

Recent years have witnessed a considerable activity towards extending the
standard single-reference coupled-cluster (CC) methods (/-9) to potential
energy surfaces (PESs) involving bond breaking without invoking a multi-
reference description (see, e.g., refs 9-37). Undoubtedly, it would be very useful
if we could routinely calculate large portions of molecular PESs with the ease-
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of-use and the relatively low cost characterizing the standard CC “black-boxes,”
such as CCSD (CC singles and doubles) (32-36), CCSD[T] (37-39), CCSD(T)
(40), and CCSD(TQy) (41).

The problem is that the CCSD method itself, on which the noniterative
CCSDI[T], CCSD(T), and CCSD(TQy) approaches are based, is inadequate for
the description of bond breaking, since it neglects all higher-than-doubly excited
clusters, including the important triply and quadruply excited 73 and T,
components. The triples and quadruples corrections of the CCSD[T], CCSD(T),
and CCSD(TQy) methods do not help, since the standard arguments originating
from the many-body perturbation theory (MBPT), on which the noniterative CC
approximations are based, fail due to the divergent behavior of the MBPT series
at larger internuclear separations. In consequence, the ground-state PESs
obtained with the CCSD[T], CCSD(T), CCSD(TQy), and other noniterative CC
approaches are completely pathological if the spin-adapted restricted Hartree-
Fock (RHF) configuration is used as a reference (cf,, e.g., refs 7, 9-21, 42—45).
The iterative analogs of the CCSD[T], CCSD(T), and CCSD(TQy) methods, in-
cluding, for example, the CCSDT-n (39, 46—49) and CCSDTQ-1 (50) ap-
proaches, and the noniterative CCSDT + Q(CCSDT) = CCSDT[Q] (50) and
CCSDT(Qy) (41) methods, in which the noniterative corrections due to T,
clusters are added to the CCSDT (CC singles, doubles, and triples) (51, 52)
energies, may improve the description of PES in the bond breaking region
(particularly, when the local correlation formalism is employed (53)), but
ultimately all of these approaches fail due to the divergent behavior of the
MBPT series at larger internuclear distances (see, e.g., refs 11, 12, 16, 42),
particularly when multiple bonds are broken (76, 42).

The natural solution to all of the above problems is obtained by switching to
the multi-reference CC (MRCC) formalisms, which introduce a concept of a
multi-dimensional model space and which are specifically designed to handle
general open-shell and quasi-degenerate states, including, at least in principle,
various cases of bond breaking (see, e.g., ref 7 for a recent review). However, it
is much easier to apply the standard single-reference CC methods of the CCSD
or CCSD(T) type, which do not suffer from intruder states and multiple,
singular, or unphysical solutions that plague the genuine MRCC theories (see,
e.g., refs 54—61). The newly developed state-specific MRCC approaches (cf.,
e.g., refs 62-71) and the MRCC approach combining the MBPT and MRCC
concepts (72, 73) may change this situation, but none of the existing MRCC
methods are simple or general enough to be as widely applicable as the standard
CCSD or CCSD(T) approaches.

One might, of course, try to resolve the failures of the standard single-
reference CC approaches at larger internuclear separations in a brute-force
manner by including the triply excited, quadruply excited, pentuply excited, etc.
clusters in a completely iterative fashion (a new programming technique
developed by Kallay and Surjan (74) allows one to write efficient computer
codes for CC methods with clusters of any rank). Unfortunately, the resulting
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CCSDTQ (CC singles, doubles, triples, and quadruples) (75-78), CCSDTQP
(CC singles, doubles, triples, quadruples, and pentuples) (79), etc. approaches
are far too expensive for routine applications. For example, the full CCSDTQ
method requires iterative steps that scale as n:n: (n,(n,)is the number of
occupied (unoccupied) orbitals in the molecular orbital basis). This scaling
restricts the applicability of the CCSDTQ approach to very small systems,
consisting of ~ 2 — 3 light atoms described by small basis sets. For comparison,
CCSD(T) is an n:n: procedure in the iterative CCSD steps and an
nin: procedure in the non-iterative part related to the calculation of the triples
(T) correction. In consequence, it is nowadays possible to perform the CCSD(T)
calculations for systems with 10-20 atoms. The application of the local
correlation formalism (80-82) enabled Schitz and Wemer to extend the
applicability of the CCSD(T) approach to systems with ~ 100 atoms (53, 83,
84).

A few single-reference or single-reference-like approaches have been pro-
posed in recent years with an intention of removing the pervasive failing of the
standard RHF-based CC approximations at larger internuclear separations, while
avoiding the complexity of the genuine multi-reference theory and astronomical
costs of the CCSDTQ, CCSDTQP, and similar calculations. The representative
examples include the reduced multi-reference CCSD (RMRCCSD) method (7,
85-90), the active-space CC approaches (which can also be classified as the
state-selective MRCC methods) (10-12, 15,43, 78, 91-101) (see refs 102—-104
for the excited-state extensions), the orbital-optimized CC methods (22, 23), the
noniterative approaches based on the partitioning of the similarity-transformed
Hamiltonian (24-28) (cf, also, ref 105), and the renormalized (R) and
completely renormalized (CR) CC methods (9, 13-18, 20, 21). The latter
approaches are based on the more general formalism of the method of moments
of CC equations (MMCC) (9, 13, 14, 18, 19, 21, 45, 106, 107), which can be ap-
plied to ground- and excited-state PESs. All of the above methods focus on
improving the description of bond breaking, while retaining the simplicity of the
single-reference description based on the spin- and symmetry-adapted references
of the RHF type. We do not discuss here the spin-contaminated approaches, in
which the improvement of the description of bond breaking is accomplished by
employing the unrestricted Hartree-Fock (42) or restricted but “spin-flipped”
(29, 30) reference configurations.

Of the methods listed above, only the noniterative CC approaches based on
the partitioning of the similarity-transformed Hamiltonian (24-28) and the (C)R-
CC approaches of refs 9, 13-18, 20, 21, which employ the MMCC formalism (9,
13, 14, 18, 19, 21, 45, 106, 107), retain the simplicity and the “black-box”
character of the standard CCSD(T) or CCSD(TQ;) methods. One of the two
goals of the present work is the development of a new class of the MMCC-based
“black-box” methods for multiple bond breaking.

The main idea of the MMCC formalism and of the related R-CC and CR-
CC approaches (9, 13-21, 45, 106, 107) is that ofthe simple, noniterative energy
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corrections which, when added to the energies obtained in the standard CC
calculations, recover the exact, full configuration interaction (CI), energies of
the electronic states of interest. Thus, the MMCC methods and the renormalized
and completely renormalized CCSD (T) and CCSD(TQ) approaches, in which
we add simple noniterative corrections due to triples or triples and quadruples to
the CCSD energies, preserve the conceptual and computational simplicity of the
noniterative CC methods, such as CCSD(T) or CCSD(TQy), while offering us a
new way of controlling the quality of CC results by focusing on the quantity of
interest, which is the difference between the full CI and CC energies. By dealing
with the remnant errors that occur in the standard CC calculations, which we
estimate by using the explicit relationships between the CC and full CI energies
defining the MMCC theory, we can obtain considerable improvements in the
results of the standard CC calculations in situations, such as bond breaking,
where conventional arguments employing MBPT fail due to the divergent
behavior of the MBPT series.

Two different types of the MMCC methods have been considered by us so
far, namely, the CI-corrected MMCC schemes (9, 18, 19, 21, 106, 107) and the
R-CC and CR-CC methods (9, /3-18, 20, 21). The Cl-corrected MMCC
schemes have an advantage of being applicable to both the ground states and the
excited states, but they require that one performs the a priori limited CI
calculations in order to construct the noniterative corrections to standard CC
energies (9, 18, 19, 21, 106, 107). Although the Cl-corrected MMCC methods
were already discussed by us in the early MMCC work (9) (cf., also, refs 19, 21,
106, 107) and although they have recently been adopted by others (108—110),
we do not discuss them here, since they combine the single-reference CC and
the active-space CI or MRCI ideas. The R-CC and CR-CC methods (9, 13-18,
20, 21) do not require any a priori non-CC calculations and are as easy to use as
the standard CC “black-boxes” of the CCSD(T) or CCSD(TQy) type. Thus, they
can rather easily be incorporated in any electronic structure package that has the
standard CCSD(T) or CCSD(TQy) codes in it. The renormalized and completely
renormalized CCSD[T] and CCSD(T) methods (the R-CCSD[T], RCCSD(T),
CR-CCSD[T], and CR-CCSD(T) methods, respectively) have recently been
incorporated (/11) in the popular GAMESS package (/12). In this chapter, we
focus on the new generation of the MMCC methods, termed the quasi-
variational (QV) and quadratic (Q) MMCC approaches, that preserve the
underlying philosophy of the standard and (completely) renormalized CCSD(T),
CCSD(TQ), and similar approaches, which is an idea of adding the noniterative
corrections to the CCSD energies that are solely based on the information
obtained in the CCSD calculations.

It has been demonstrated in several benchmark calculations that the CR-
CCSD(T) (completely renormalized CCSD(T)) and CR-CCSD(TQ) (completely
renormalized CCSD(TQ)) methods provide an excellent description of entire
PESs involving single and double bond dissociation (9, 13, 15, 17-19, 21, 111),
highly-excited vibrational term values near dissociation (/7, 18, 21, 111), and
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entire PESs for exchange chemical reactions of the general type: closed shell +
closed shell — doublet + doublet (20, 21). However, the CR-CCSD(T) and CR-
CCSD(TQ) results for triple bond breaking (e.g., in N;) and for certain types of
double bond breaking (e.g., in C,) are somewhat less impressive (14, 18, 21).
For example, the relatively small (~ 1 millihartree) errors, relative to full CI, in
the CR-CCSD(TQ) results for the double zeta (DZ) (//3) model of N near the
equilibrium geometry R, increase to 10-25 millihartree, when R > 1.75 R, (14)
(R is the N-N separation). Those are fairly small errors, when compared to the
-387.448, 334.985, and 426.175 millihartree errors in the CCSD(T),
CCSD(TQy), and CCSDT(Qy) results at R = 2.25 R,, but the problem of the 10—
25 millihartree errors in the CR-CCSD(TQ) energies for the larger internuclear
separations in multiply bonded molecules should, in our view, be addressed. We
have recently demonstrated that we can obtain the 1.217-4.552 millihartree
errors in the entire R = 0.75 R, — 2.25 R, region for a complicated case of N, by
performing the Cl-corrected MMCC calculations (27). In this work, we are
addressing the following question: Can one formulate the MMCC
approximations that preserve the philosophy of the CCSD(T), CCSD(TQy), CR-
CCSD(T), CR-CCSD(TQ), and similar approaches, which is an idea of adding
noniterative corrections to the CCSD energies that do not require the a priori
non-CC calculations, and yet obtain the virtually perfect description of triple
bond breaking?

The proposed solution, termed the quasi-variational MMCC (QVMMCC)
formalism, and its quadratic MMCC (QMMCC) variant, both described in this
article, are based on combining the idea of the MMCC noniterative energy
corrections with the elements of the extended CC (ECC) (//4-124) and
expectation value CC (XCC) (/24-126) theories, in which products involving
cluster operators and their deexcitation counterparts are used to mimic the
effects of higher-order clusters, such as 7;. In designing the QMMCC approach,
we were particularly inspired by the recent work by Head-Gordon and
coworkers (27, 28, 127-129), who demonstrated that the variational CCD (CC
doubles) calculations, based on minimizing the expectation value of the
Hamiltonian with the CCD wave function, and the quadratic approximation to
the bi-variational ECCD (ECC doubles) method lead to a qualitatively correct
description of triple bond breaking in N,, eliminating, in particular, the
nonvariational collapse of the standard CCD theory at large internuclear
separations. As demonstrated in this work, the QMMCC corrections to CCSD
energies provide the virtually exact description of the potential energy curve of
N, with the ease-of-use of the noniterative CC approaches of the CCSD(T) or
CCSD(TQy) type.

Because of the apparent relationship between the QVYMMCC or QMMCC
methods and ECC/XCC approaches, we also explore the usefulness of the ECC
theory in studies of multiple bond breaking, using N, as an example. Instead of
the strictly bi-variational ECC method of Arponen and Bishop (//4-123), we
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use the simplified variant of the ECC theory described by Piecuch and Bartlett
in ref 124. We consider the complete ECCSD (ECC singles and doubles)
formalism as well as its linear and quadratic approximations. As shown in this
article, the complete ECCSD theory and its quadratic QECCSD variant provide
an excellent description of the entire potential energy curve of N,. The linear
ECCSD (LECCSD) theory provides improvements over the standard CCSD
results, but those improvements are not sufficient to obtain a good quality
potential for N,. We also analyze the relationships between the exact wave
functions obtained by the full CI method and the approximate wave functions
resulting from the CCSD, QECCSD, and ECCSD calculations.

The Method of Moments of Coupled-Cluster Equations:
An Overview of the Ground-State Formalism

In the ground-state MMCC theory, we focus on the noniterative energy
correction

&Y =By - B, M

which, when added to the energy E,”, obtained in the standard single-reference
CC calculations, referred to as method 4, recovers the full CI ground-state
energy Eo. The purpose of the approximate MMCC calculations is to estimate
correction &,", such that the resulting MMCC energy, defined as

is close to the corresponding full CI energy E,.

Let us recall that in the single-reference CC theory, the ground-state wave
function |‘Po) of an N-electron system, described by the Hamiltonian H, is given
by the following expression:

[¥o)=e"|D), 3)

where T is the cluster operator and |®) is the independent-particle-model (IPM)
reference configuration (e.g., the Hartree-Fock determinant) defining the Fermi
vacuum. In all standard CC calculations, we truncate the many-body expansion
of cluster operator T at some excitation level m, <N, i.e., the formula for cluster
operator 7% defining the CC method 4 is

my
T=3r, @)

n=|

where T,, n = 1,..., m,, are the many-body components of 7). The standard
CCSD method is obtained by setting m, = 2 in eq (4). In the CCSDT method,
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my is set at 3; in the CCSDTQ approach, m, = 4, etc. The explicit equation for
the n-body cluster component T,, in terms of the excitation operators E.' %,
which, when actmg on reference |d>) generate the n-tuply exclted

configurations |d>"‘ ") and the cluster amplitudes t" fgn is as follows:

Z t'l ’n Eal ,"an 5)
)<<y
ay<---<ap,

As usual, letters i and a designate the occupied and unoccupied spin-orbitals,
respectively.

In all standard CC approximations, the cluster operator 7 or the cluster
amplitude ¢! ' that define it are obtained by solving the system of nonlinear,

an . .
energy-independent, algebraic equations,

Qnﬁ(A)kD) =0, n= la""mA ’ ©
where
A =™ g™ = (He™"), ™

is the similarity-transformed Hamiltonian of the CC theory and where subscript
C designates the connected part of the corresponding operator expression. The
O, operators entering eq (6) are the projection operators onto the subspaces of
the n-tuply excited configurations relative to reference |¢) ,i.e.,

- g, -Gp a,":ap
Qn - Z q)q In ><(Dq dn | ®
Y <<ty
a)<---<ap,

In particular, the standard CCSD equations for the singly and doubly excited
cluster amplitudes ¢! andt"'2 defining the 7, and T, components, respectively,
have the following form:

<q)::| ITICCSD | CD) =0, ©)
<q’:5:2 AP |®) =0, i <iy, a) <@, (10)

where
}_{CCSD = e-(7i +0 )HeTi+T2 = (HeTl+T2 )C (1 1)

is the similarity-transformed Hamiltonian of the CCSD approach. The system of
CC equations, eq (6), is obtained in the following way: We first insert the CC
wave function |¥, ), eq (3), into the electronic Schrédinger equation,

H|¥,)=Ey|¥,), (12)
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and premultiply both sides of eq (12) on the left by ¢ to obtain the connected
cluster form of the Schrddinger equation (/, 2, 4, 7, 9),

H|®)=E,|®), (13)
where
H=e¢THe = (HeT )e (14)

is the similarity-transformed Hamiltonian. Next, we project eq (13), in which T
is replaced by its approximate form 7“), onto the manifold of excited
configurations generated by 7 (represented in eq (6) by the projection
operators O, with n = 1,... , m,). Once the system of equations, eq (6), is solved
for T¥, the CC energy corresponding to the standard method 4 is calculated as
follows:

E = (0| A|0). (15)

Eq (15) can be obtained by projecting the connected cluster form of the
Schrédinger equation on the reference configuration |®).

Piecuch and Kowalski proved that one can obtain the full CI energy E, if the
following noniterative correction 85* is added to the CC energy E® (9, 13):

N n
&= X (Hol0Crk(m)M,(m)| @)/ (Fo|e™ | @) (16)

n=mg+l k=m4+1
Here,
Coa(m)=(e"?),, an

are the (n — k)-body components of the CC wave operator ¢, defining method
A, |‘Po) is the exact ground-state wave function, and

M (mp)|®)=QHP|®)= 3 MI% (m,)
N <<l
a]<...<ak

o) (9

are the quantities defined through the coefficients

M H?| D) (19

,Iu.[
aq

()= (5
representing the projections of the single-reference CC equations of method 4
on all k-tuply excited configurations d>:"'.,':'* with ¥k > m,. The C,(my)
quantities are trivial to generate. The zero-body term, Cy(m,), equals 1; the one-
body term, C, (m,), equals T;; the two-body term, Cy(m,), equals 7, +12-7]2 if my
> 2,The M"_',',';k (m,) coefficients, eq (19), define the generalized moments of
CC equations. They can be easily calculated for the basic CC approximations,
such as CCSD (the m, = 2 case). As pointed out in our earlier work (9, /3), the
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M, % (m,) moments represent the fundamental quantities for the CC theory.
For example, the system of equations defining method 4, eq (6), can be obtained
by requiring that all M;'l',',"; (m4) moments with k =1,..., m4 vanish.

Eq (16) can be derived in several different ways. The original derivation of
eq (16), presented in ref 9, has been based on the analysis of the mathematical
relationships between multiple solutions of nonlinear equations representing
different CC approximations (CCSD, CCSDT, etc.). An elementary derivation
of eq (16), based on applying the resolution of identity to an asymmetric energy
expression,

7

(ol H - B |0/ (4| |0) = B, - B0 =50 @0
defining the so-called MMCC functional, has been given in Appendix A of ref
13 (cf,, also, refs 21, 106).

Eq (16) is the basic equation of the ground-state MMCC formalism. The
meaning of eq (16) is as follows: If we want to obtain the exact, full CI, energy
by adding the noniterative correctiond{” to the energy £*) obtained in the
standard CC calculations with method A, we must calculate the generalized
moments M",'I’,','Z‘k (my) corresponding to projections of CC equations on all
excited configurations that are not included in method 4. Thus, if we want to
recover the full CI energy by adding the correction 6{* to the CCSD energy (the
m, = 2 case), we have to calculate the generalized moments of the CCSD
equations corresponding to projections of these equations on triply, quadruply,
pentuply, and hextuply excited configurations, i.e.,

M @)=(0n0

a)---ag

HP|D), k=3-6. @1

We do not have to consider the projections of the CCSD equations on higher—
than-hextuply excited configurations, since for Hamiltonians containing up to
two-body interactions the Ma"l',"’;* (2) moments with k > 6 vanish. Once the
generalized moments of the CCSD equations are known, we can define the
quantities M,‘(2)|<D), using eq (18), to calculate the non-iterative MMCC
correction

N mun(n,6)
5P =3 Y (¥ 0,Cok QM Q)| D)/ (¥, le2|D) (22
n=3 k=3
to the CCSD energy.

The remaining issue is what do we do with the wave function I\Po) in eqgs
(16) or (22), which in the exact MMCC theory represents the full CI ground
state. In the approximate MMCC methods considered in our earlier work, the
wave functions |¥,) were evaluated either by using the low-order MBPT
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expressions (9, 13-18, 20, 2I) or by performing the inexpensive limited CI
calculations (9, 18, 19, 21, 106, 107). The use of the low-order MBPT
expressions is particularly interesting, since it leads to the renormalized (R) and
completely renormalized (CR) CC approaches, which represent simple
computational “black-boxes” capable of describing bond breaking with the ease-
of-use of the standard CC calculations of the CCSD(T) or CCSD(TQy) type. For
example, if we replace |¥,) in eq (22) by

[P = (14 T, + T + T| @), 23)

we obtain the CR-CCSD[T] approach, in which we calculate the energy as
follows (9, 13-15, 17, 18, 21):

E(():R-CCSD[T] - Eg:cso + (chsnml Q3 M3 (2)|¢> / <‘PCCSD[T]| UL |¢> (24)

Here, T, and T; are the singly and doubly excited clusters obtained by solving the
CCSD equations, EC®P is the CCSD energy, and

T8|0) = RY (V,, T,) | ®) (25)

is a CCSD analog of the connected triples contribution to the MBPT(2) (second-
order MBPT) wave function ( R$" designates the three-body component of the
MBPT reduced resolvent and Vy represents the two-body part of the
Hamiltonian in the normal-ordered form). If |‘P§CSDm> in eq (24) is replaced by

I‘PCCSD(T)> =quCCSD[Tl> + Ré3)VN7;|<D), (26)

we obtain the CR-CCSD(T) method (9, 13-15, 17, 18, 20, 2I). The CR-
CCSD(TQ) approaches are obtained in a similar way (9, 13-15, 17, 18, 21).

The CR-CCSD[T]}, CR-CCSD(T), and CR-CCSD(TQ) methods remove the
failing of the CCSD[T], CCSD(T), and CCSD(TQy) approaches at larger
internuclear separations and often provide an excellent description of PESs
involving single and double bond dissociation (9, 13, 15, 17-21, 111). However,
the CR-CCSD(T) and CR-CCSD(TQ) results for triple bond breaking and for
certain types of double bond breaking (e.g., in C;) are somewhat less accurate
(14, 18, 21). 1t is, therefore, interesting to examine if it is possible to develop
new MMCC approximations, which would improve the description of triple
bond breaking and preserve, at the same time, the philosophy of the CR-
CCSD[T], CR-CCSD(T), and CR-CCSD(TQ) approaches and their standard
counterparts, which is an idea of adding the noniterative corrections to the
CCSD energies that are solely based on the 7, and T cluster components
obtained in the CCSD calculations.
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The Quasi-Variational and Quadratic MMCC Methods

Our recent numerical experiments with the Cl-corrected MMCC methods
indicate that in looking for the extensions of the CR-CCSD[T], CRCCSD(T),
and CR-CCSD(TQ) methods that would provide an accurate description of triple
bond breaking one may have to consider the approximations that use the
pentuply and hextuply excited moments of the CCSD equations, M)"% (2), k=
5 and 6, respectively (27). The CR-CCSD[T] and CR-CCSD(T) methods use
only the triexcited CCSD moments M;'g;f,; (2), whereas the CR-CCSD(TQ)
approaches use the tri- and tetraexcited moments, M;:gﬁ, (2) and M7% (2),
respectively. In our initial attempt, we tried to extend tfme CR-CCSDﬁ' , CR-
CCSD(T), and CR-CCSD(TQ) approaches by replacing|'¥,) in eq (22) by the
MBPT(3)-like wave function, which is the lowest-order wave function that has
the pentuply and hextuply excited contributions that could engage the pentuply
and hextuply excited moments, M?3%  (2) and My22e>% | (2), respectively.
Unfortunately, we have not succee ec? in improving the CRCCSD(TQ) results
for triple bond breaking, reported in ref 14, with the resulting methods. A
different strategy, described in this section, is required if we want to improve the
CR-CCSD(TQ) results for triple bond breaking by adding noniterative “black-

box” corrections to the CCSD energies.
Theoretical Considerations

Since the MBPT(3)-like wave functions I‘Po proved to be rather ineffective
in constructing the highly accurate corrections 5. > for multiple bond breaking,
we decided to consider an alternative approach, in which |‘Po) in egs (16) or (22)
has a CC-like exponential form,

I\PS,)VMMCC> =ef |(D) , @7

where X is an approximation to the exact cluster operator 7. The use of the wave
function|¥I™MMCC) | eq. (27), instead of|¥,)in calculating the MMCC
correction 85", eq (16), ords P, eq (22), with various forms of the cluster
operator Y, leads to the hierarchy of the quasi-variational MMCC (QVMMCC)
approximations. The QVMMCC energy correction to the CC energy E{™ has the
following general form (cf. eq (16)):

N n
EO'QVMMCO) = Y Y (0 0,C, . (m, )M, (m,)|®)/

n=mg+1 k=m,+1 (28)

<(p|ez1e7*(o4) |(D>
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In particular, if method A represents the CCSD theory, the corresponding
QVMMCC energy is calculated by adding the correction (cf. eq (22))

5°CCSD (QVWCC) = i mlinﬁ) ((D kz? QnCn~k (2)Mk (2)| ¢)>/

n=3 k=3 29)
((Dl ez' e+ I (D)

to the CCSD energy. The CC-like wave ﬁmctions!‘{‘(?VMMCC>eq (27), should be
more effective in introducing the higher-order terms, needed in accurate
calculations for multiple bond breaking, into eqs (16) or (22) than the finite-
order MBPT expressions used in the existing CR-CCSD[T], CR-CCSD(T), and
CR-CCSD(TQ) approaches. Moreover, the use of the exponential form
of I‘Po) in egs (16) and (22) guarantees the strict size extensivity of the resulting
energies.

The name “quasi-variational”, in reference to all MMCC methods based on
eqs (28) or (29), originates from the fact that by inserting the wave function
YIYMMCC) "eq (27), into eq (16) or into the equivalent MMCC functional, eq
20), and by assuming that ¥ = T, we obtain the expectation value of the
Hamiltonian with the CC wave functione” |®), which is an upper bound to
the exact ground-state energy. Indeed, by replacing|'¥, ) in eqs (16) and (20) by
I‘P(?VMMCCS eq (27), we obtain,

5(QVMMCC) = (®]e™ He™* |0)/(@]e™ ™ |@)- Ef”  (30)

so that the corresponding QVMMCC energy, defined by adding
5" (QVMMCC) to E{?, becomes

EQYMMCC = BN 4 54 (QVMMCC)
=(@|e™ He™"' |®)/(®]e" ™" |®).

When T = 7, the QVMMCC energy, eq (31), reduces to the expectation value
of the Hamiltonian with the CC wave functione’ |®) ..

Based on the above considerations, one might propose an approximation, in
which ¥ = T, + T, in eq (29), with T, and 7, obtained in the standard CCSD
calculations. When added to the CCSD energies, the resulting corrections
é}fCSD (QVMMCC) would provide upper bounds to the exact energies and, in
analogy to the variational CCD theory (28, 127), the choice of > =T + Ty ineq
(29) would lead to a qualitatively correct description of triple bond breaking in
N,, eliminating, in particular, the nonvariational collapse of the standard CCSD
approach at larger N-N separations (/4, /6, 18, 21, 42, 44). Our numerical tests
indicate, however, that the calculations of correction 50ccso (QVMMCCO), eq
(29), with 3 =T, + T, although providing the upper bounds to the exact ground-
state energies, do not lead to the desired improvements in the quantitative

(€))
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description of multiple bond breaking by the QVMMCC theory. This is a
consequence of the fact that the choice of ¥ =T; + T in eq (29) does not bring
any meaningful information about the connected triexcited clusters T3, which are
essential for a quantitative description of bond breaking.

The simplest way of introducing the approximate 7; clusters into the
correction 5. °° (QVMMCC) is obtained by considering the following form of
the cluster operator Y. in eq (29):

T=T+T,+ T (32)

where T{?is an MBPT(2)-like estimate of T; defined by eq (25). It should be
noticed that ¥, eq (32), represents an approximation to the exact cluster operator
T, which is correct through the second order of the MBPT wave function (7} and
T contribute, for the first time, in the second order and T contributes, for the
first time, in the first order; T, Ts, etc. do not contribute in the first two orders).
We could, of course, contemplate other, more elaborate, forms of X in eq (29),
but our numerical experience to date indicates that a simple definition of X
given by eq (32) is sufficient to provide very good results for triple bond
breaking.
There is only one problem associated with the use of the wave function
‘YOQVMMCCZeq (27), in calculations of corrections 55", namely, the use of the
exponential wave functionl‘l’oQVMMCC requires that we consider all many-body
terms resulting frome” in eq (29), including the N-body ones, where N is the
number of electrons, which is impractical. In order to eliminate this bottleneck,
we decided to consider simple approximations, in which the power series
expansion forI‘POQVMMCC

’

|\PQVMMCC - N g.|<p> (33)
0 ) ; ot

or the analogous power series expansion for = with Y defined by eq (32), is
truncated in eqs (22) or (29) at a given power of X The following two ap-

proximations are particularly important, namely, the linearized QVMMCC
(LMMCC) model, in which
I\POQVMMCC> ~ I\P(!’.MMCC> =1+ Z)I(D> , (34)
and the quadratic QVMMCC (QMMCC) model, in which
[ = [wQMEC) = (14 2 +127)| ). (39)

The motivation behind the LMMCC approximation stems from the success of
the CR-CCSD[T] and CR-CCSD(T) methods in describing single bond breaking
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(9, 13, 15, 17-21, 111). As shown in the previous section, the CR-CCSD[T] and
CR-CCSD(T) approximations are based on the formulas forl‘Po) that are linear
in cluster amplitudes or their perturbative estimates (see eqs (23) and (26) for
|\Poccsom> and g,occsom , respectively). As a matter of fact, the LMMCC
approach using 2. defined by eq (32) is equivalent to the CR-CCSD[T] method
defined by egs (23) and (24). Indeed, the ‘P'O'MMCC wave function, eq (34), with
2 defined by eq (32), is identical to the OCCSDm wave function defined by eq
(23). In consequence, the LMMCC energy equals the CR-CCSD[T] energy, eq
(24).

The LMMCC or CR-CCSDI[T] and CR-CCSD(T) methods cannot describe
multiple bond breaking (cf., e.g., ref /4) because of the absence of the quadratic
{-Tg terms in the wave functionsl‘i’o) defining the relevant energy corrections
8 0 .These terms are present in the wave function|%¥,) defining variant “b” of
the CR-CCSD(TQ) theory (the CRCCSD(TQ),b approach of ref 14). In
consequence, the CR-CCSD(TQ),b results for multiple bond breaking are
considerably better than the CRCCSD[T] and CR-CCSD(T) results (/4).
Thelz-Tz2 and other bilinear terms in cluster amplitudes, such as Tsz, are also
present in the wave ﬁmctionl‘{’(?MMcc> , €q (35), defining the QMMCC theory.
Thus, we can expect further improvements in the description of multiple bond
breaking by the QMMCC method. This statement parallels similar findings by
Head-Gordon et al. (27, 28, 128, 129), who considered the quadratic variant of
the ECC theory of Arponen and Bishop (/14 -123), in which the energy is
calculated by imposing the stationary conditions for the asymmetric, doubly
connected, energy functional

E¥C(Z,T) = (®|e" e THe" |0) = (@]e™ H|®) = (@][e™ (HeT)c ] |®), (36)

Where A is the similarity-transformed Hamiltonian, eq (14), with respect to two
independent cluster operators T and ¥ or, more precisely, with respect to the
excitation operator T and the deexcitation operator Y. The advantage of eq (36)
over the expectation value of the Hamiltonian with the CC wave function, which
can also improve the results for multiple bond breaking (28, 127), is the fact that
EF(T,1) is a finite series in T and X' Unfortunately, the power series
expansions of E5C (I, 7), eq (36), in terms of T and X' contain higher powers of
T and T' that cause the ECC calculations to become prohibitively expensive,
even at the lowest-order ECCD level (124, 128). For this reason, Van Voorhis
and Head-Gordon considered the QECCD (quadratic ECCD) or QCCD
approximation, in which the power series expansion of EECC(Z,T), withT =T,
and ¥ = Y,, is terminated at the quadratic terms in X' (/28) (cf,, also, refs 27,
28, 129). In analogy to the QMMCC approach vs. full QVMMCC theory, the
QCCD approximation is considerably less expensive than the full ECCD
approach using higher powers of Y'and yet it leads to a correct description of
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triple bond breaking in N,, eliminating the nonvariational collapse of the
standard CCD theory at larger N-N separations (/28). We should emphasize,
however, the difference between the QCCD approximation of ref 128, in which
operators T and 3 are treated independently and optimized by imposing, for
example, the stationarity conditions on the quadratic approximation to the full
ECC functional, i.e.,

E®CE,n=(o|1+z' +1EN1H|0), (37

and our QMMCC methods, in which T is obtained in the standard CC
calculations, such as CCSD, and Y. is defined via the cluster components of this
T (cf. eq (32)).

Let us now examine the contents of the QMMCC theory, in a somewhat
greater detail, by discussing the QMMCC equations for the special case, where
the QMMCC corrections are added to the CCSD energy (7 =T, + T5) and X is

defined by eq (32). The truncation of the power series expansion of ¢ in eq (29)
at the quadratic (X")? terms, with . defined by eq (32), greatly simplifies eq (29)

N 6
by reducing the summation over » from Z to Z . The resulting energy
n=3 n=3

expression, defining the complete QMMCC theory within the 7) = T, + T; and
2=T\+T,+ T,[21 approximation, referred here and elsewhere in this work to as
the QMMCC(2,6) method, has the following form:

E(())MMCC(Z,G) = gCSD + 5((’ZCSD (QMMCC(2,6)) , (38)
where
Jé:CSD (QMMCC(2,6)) = NQMMCC(2,6) / DQMMCC(Z.G) , (39)

with the numerator

NoieEas $+3 yauicelo oy k)M, (2)|0)

n=3 k=3
=(O|IT'T} + (1) 1M, (2)
+[3(T) + TN (I M (2) + TM,(2)]
+ I M (2) + TM, (2)+ (T + 1T )M;(2)]
+ 3T PIM(2) + TM(2)+(T +3T7)M,(2)
+(TT, +%7;3)M3(2)]|¢>, (40)
and the denominator

DMMCCQ2) _ <\P8MMCC I eNi*h |¢>
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=1+(®|T' @) + (@[T} + {1 XL, +41)| @)
(O[T} +(TH'TT, + LT7)|D)

(@@ + I (YA T + 1127, + L 14| @)
(@ (@Y GILL +35°T + 55 1)|®)
(

120

OGN TRT +{TT + R L+ T|®). (4D

+

+

.+.

+

+
As we can see, the QMMCC(2,6) method represents a considerable im-
provement over the LMMCC or CR-CCSD[T], CR-CCSD(T), and CR-
CCSD(TQ),b methods. In addition to the linear terms in X' that are already
present in the LMMCC or CR-CCSD[T] and CR-CCSD(T) models and that
engage the triply excited moments M""” (2) (see egs (23)—(26)) and in addition
to the quadratic J-(T2 ) terms that are present in the CR-CCSD(TQ),b energy
expression and that engage the tetraexcited moments M"";’f,; (2) (14), the
QMMCC(2,6) energy contains the T (7i%})' and 1[(T; [21)f] components that
originate from the (')’ quadratic terms and that lead to the appearance of
the M, (2)|®) and M (2)|®) quantities in eq (40). In consequence, the
QMMCC(2,6) energy expression involves the complete set of the generalized
moments of the CCSD equations, including the pentuply and hextuply excited
moments, M2%¢  (2) and MI234%  (2), respectively. The presence of

the M:g;:ws 50)3 and M'l':'{;;g:: ::(2‘)"0#oments in the QMMCC(2,6) energy
should hgip us to obtain an accurate description of tnPle bond breakmg

Even if we ignore the presence of the DMMCC28) denominator in eq (39)
(denominators of this type are characteristic to all MMCC expressions; they
always play a vital role in improving the results of the MMCC calculations in

the bond breaking region; cf., e.g., refs 9, 13, 14, 21), the QMMCC(2,6) energy
correction 85° (QMMCC(2,6)), eq (39), has an interesting many-body

structure, which is characterized by a nonstandard combination of the lower- and
higher-order terms. The usual fourth-order-like terms, such as

EM = (0| "y T,)c | ®). 42)

which originate from the (<D|(T3(2])TM3(2)|(D) contribution and which define
the noniterative triples corrections of the standard (37—40) and renormalized
(9,13-15, 17, 18, 20, 21) CCSD[T] and CCSD(T) methods, and the familiar
fifth-order-like terms, such as

Eg) = 1@ Y T )| @) @3)
and
B = H{o|m™) 1) | @), 44)
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which  originate from  the 1(®|(7})’ M, (2)|®) and (®|(T{)! M, (2)| D)
contributions and which define the standard (see ref (47) and references therein)
and renormalized (9, 13-15, 18, 21) CCSD(TQ) methods (cf. refs 130-132
for detailed information about all fifth-order E¥! terms), are combined in
eq (40) with several higher-order terms, including, for example, the
sixth-order-like  (®|T} (T T,(V,T,)c | @) term,  originating from the
(@1} (T 1M, (2)|<I)2 contribution, or the eighth-order-
like -415(¢|[(7§27)f F(VyT;))c |®) term, originating from 4(®|[7{)'F M, (2)|®).
The order-by-order analysis, based on the conventional MBPT formalism, used
to design the standard CC approximations, would never allow us to write the
expressions of the type of eq (40). This observation, combined with the success
of the QMMCC(2,6) theory in describing triple bond breaking in N, (see the
next subsection), is a clear demonstration of the new possibilities offered by the
MMCC formalism, which allows us to formulate new and useful types of the
noniterative corrections to CC energies that are characterized by the nonstandard
selections of higher-order terms.

Along with the complete QMMCC(2,6) method, defined by egs (38)- (41),
we decided to test the approximate QMMCC schemes, in which the high-order
terms involving the most expensive hextuply or pentuply and hextuply excited
moments of the CCSD equations are ignored. For example, we can neglect the
LUTPH'P term in eq (40) by reducing the summation over nto Y. 5_; and we
can simultaneously ignore a similar term in eq (41). This leads to the
QMMCC(2,5) method, which does not require the calculation of the hextuply
excited moments M/2%45% (2) As shown in the next subsection, the absence

0,330,050,

of the M17%4%  (2) moments and 1[(T*)'? components in the QMMCC(2,5)
energy expression has no detrimental effect on the results of QMMCC
calculations for triple bond breaking in N,. We can also propose the
QMMCC(2,4) and QMMCC(2,3) approximations. The QMMCC(2,4) method is
obtained by ignoring the T (7{%)'terms in eqs (40) and (41) defining the
QMMCC(2,6) energy formula, in addition to the {[(T{*')'] terms that have
already been neglected in the QMMCC(2,5) approach. The QMMCC(2,4)
method, just like its CR-CCSD(TQ),b counterpart of ref 14, requires that we
only consider the tri- and tetraexcited moments of the CCSD equations,
Mz, (2) and M3 (2), respectively. In the QMMCC(2,3) approximation,
we go one step further by neglecting the [1(7})* + ;' (71")! ] terms in eqs (40)
and (41), in addition to all the other terms ignored in the QMMCC(2,4) and
QMMCC(2,5) approximations. The resulting QMMCC(2,3) energy formula is
almost identical to the energy expressions defining the CR-CCSD[T] or CR-
CCSD(T) approximations. In particular, the only moments of the CCSD
equations that need to be considered in the QMMCC(2,3) calculations are the

3 H LUL]
triexcited moments Ma, o (2)-
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Neither the QMMCC(2,3) method nor its CR-CCSD[T] and CR-CCSD(T)
counterparts are capable of describing multiple bond breaking (cf. ref /4). Thus,
in the present work we focus on the QMMCC(2,4), QMMCC(2,5), and
QMMCC(2,6) approximations. In particular, we consider the QMMCC(2,4)
approach, which allows us to understand the significance of the CR-CCSD(TQ)
methods, when compared with the lower-order LMMCC and higher-order
QMMCC models. A direct comparison of the QMMCC(2,4) and CR-
CCSD(TQ),b energy expressions indicates that the CR-CCSD(TQ),b approach
can be viewed as a slightly modified QMMCC(2,4) theory, in which the only
bilinear term of the l(ZZ')2 type, multiplying [M,(2)+T,M, (2)] in eq (40) and
(sz +1T, T, +-1-T‘) in eq (41), is the Iowest-orderl(T ) term. This is
reﬂected in the similarity of the QMMCC(2,4) and CR-CCSD(TQ),b results (see
the next subsection). At the same time, the LMMCC approach is equivalent to
the CR-CCSD[T] method, which is, in turn, only slightly less accurate than the
CR-CCSD(T) approach (9, 13, 21) and considerably less accurate than the CR-
CCSD(TQ),b method in applications involving multiple bond breaking (/4, 18,
21). Finally, the QMMCC(2,4) approach is an approximation to the more
complete QMMCC(2,5) and QMMCC(2,6) models. This means that the CR-
CCSD(TQ),b or QMMCC(2,4) approaches can be regarded as the intermediate
steps between the less accurate LMMCC = CR-CCSD[T] or CR-CCSD(T)
methods, which work great for the ground-state PESs involving single bond
breaking (9, 13, 15, 17, 18, 20, 21), and the more accurate QMMCC(2,5) and
QMMCC(2,6) approaches, which are capable of providing an accurate
description of the PESs involving multiple bond breaking. We expect, therefore,
to observe the following accuracy patterns in the actual calculations for bond
breaking:

LMMCC = CR-CCSD[T] < CR-CCSD(T)

< CR-CCSD(TQ),b ~ QMMCC(2,4) }
< QMMCC(2,5) < QMMCC(2,6) = QMMCC < Full CI. (45)

Numerical Example: Bond Breaking in N,

The primary motivation behind the QMMCC approximations is the need to
improve the CR-CCSD(TQ) description of more complicated types of multiple
bond breaking, such as triple bond breaking in N,. The CRCCSD[T], CR-
CCSD(T), and CR-CCSD(TQ) methods are capable of providing an excellent
description of PESs involving single and double bond dissociation (9, /3, 15,
17-21, 111), but the CR-CCSD(T) and CR-CCSD(TQ) results for triple bond
breaking are less accurate (/4, 18, 21). This can be seen by analyzing the CR-
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CCSD(T) and CR-CCSD(TQ),b results for the potential energy curve of the N,
molecule, as described by the DZ basis set (/13), shown in Table I and Figure 1.

The CR-CCSD(T) method improves the standard CCSD(T) results for N at
larger internuclear separations R, but the level of improvement offered by the
CR-CCSD(T) approach is not sufficient to make the CR-CCSD(T) method a
reasonable alternative for calculating PESs involving multiple bond breaking
(see Table I). The CR-CCSD(TQ),b approach performs much better in this
regard, eliminating almost all pathologies observed in the standard single-
reference CC calculations for N, but the 10-25 millihartree differences between
the CR-CCSD(TQ),b and full CI energies at the intermediate and larger values
of R are still too large for many applications. Clearly, it would be desirable to
reduce the 10-25 millihartree errors in the CR-CCSD(TQ),b results at larger
values of R to a few millihartree. It would also be useful to reduce or, at the very
least, shift away the small, ~ 4.9 millihartree, hump on the CR-CCSD(TQ),b
potential energy curve obtained for the DZ model of N, towards larger N-N
separations.

The QMMCC results for the N, molecule, as described by the DZ basis set,
obtained by adding the QMMCC(2,6), QMMCC(2,5), and QMMCC(2,4)
corrections to the CCSD energies (all obtained with the ground-state RHF
determinant as a reference), are shown in Table I and Figure 1. As we can see,
the QMMCC(2,6) and QMMCC(2,5) methods provide an excellent description
of the entire R = 0.75R, — 2.25R, region (recall that R, = 2.068 bohr is the
equilibrium bond length of N,). The more complete QMMCC(2,6) theory
reduces the very large negative errors in the CCSD results for N; in the R >
1.75R, region and the 13.517, 25.069, and 14.796 millihartree errors in the CR-
CCSD(TQ),b results at R = 1.75R,, 2R,, and 2.25R, to 1.380, 6.230, and -3.440
millihartree, respectively. For the smaller values of R, the errors in the
QMMCC(2,6) results are ~ 1 — 2 millihartree (they are smaller than the errors
obtained in the full CCSDT calculations).

As shown in Figure 1, the QMMCC(2,6) potential energy curve for N, is
very close to the exact potential energy curve obtained with the full CI approach.
The hump on the QMMCC(2,6) potential energy curve is smaller than the hump
on the CR-CCSD(TQ),b curve. The QMMCC(2,6) potential is a monotonically
increasing function in the entire 2.068 bohr < R < 4.35 bohr region. The
QMMCC(2,6) energies begin to decrease only when R ~ 2.25R,, but even there
the errors in the QMMCC(2,6) results, relative to full CI, are less (in absolute
value) than 3.5 millihartree (cf. Table I). The approximate dissociation energy
D,, calculated by forming the difference between the QMMCC(2,6) energies at
R=4.35bohr and R = R,, is 6.59 eV, is in excellent agreement with the full CI
value of D, of 6.61 eV. The QMMCC(2,6) potential energy curve is located
above the full CI curve in the entire R < 2.25R, region, in spite of the apparently
nonvariational behavior of the CCSD method at larger N-N separations.
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Table I. Ground-state energies of the N, molecule, as described by
the DZ basis set (113), for a few internuclear separations R °

Method 0.75R, R 1.25R, 15R, 1.7J5R, _ 2R, _ 2.25R,
CCSD 3.132 8289 19.061 33.545 17.714 -69.917 -120.836
CCSDT® 0.580 2.107 6.064 10.158 -22.468 -109.767 -155.656
CCSD(T)* 0742 2156 4971  4.880 -51869 -246.405 -387.448
CCSD(TQy)® 0226 0323 0221 -2279 -14243 92981 334.985
CCSDT(Qp? 0.047 -0.010 -0.715 -4.584 3.612 177.641 426.175

CR-CCSD(T)¢ 1.078 3.452 9.230 17.509 -2.347 -86.184 -133.313
CR-CCSD(TQ),b¢ 0.451 1302 3.617 8.011 13517 25069 14.796
QMMCC(2,4) 0.458 1384 3916 8.362 13.074 22091 10.749
QMMCC(2,5) 0.384 1.012 2365 3.756 1415 6.672  -2.638
QMMCC(2,6) 0384 1.012 2373 3.784 1.380 6.230 -3.440
QMMCC(2,6) 0384 1.013 2397 3.782 1378 6.240 -3.418
Iygltyl
(M‘;I:":";::s"s (2) =0
QMMCC(2,6) 0.387 1.040 2533 4317 2.062 4674 -6.499

( M alslls (2) =0,

43,3049

( M 12slisls (2) =0

919,032,059

? The CC and QMMCC energies are in millihartree relative to the corresponding
full CI energy values, which are -108.549027, -109.105115, -109.054626,
-108.950728, -108.889906, -108.868239, and -108.862125 hartree for R = 0.75R,,
R., 1.25R,, 1.5R,, 1.75R,, 2R,, and 2.25R,, respectively The lowest two occupied
and the highest two unoccupied orbitals were frozen in the correlated calculations.

b The equilibrium bond length, R, = 2.068 bohr.

¢ From ref 14.

4 From ref 16.

Based on the nature of the triple bond in N,, which requires, at least in
principle, some hextuply excited configurations in the CI expansion of the
ground-state wave function, one might expect that the lower-order QMMCC
methods, such as QMMCC(2,5), should not work well at larger N-N
separations. Interestingly enough, this is not the case. As demonstrated in Table
I, the QMMCC(2,5) approach, which does not require the calculation of the
hextuply excited M22%4 (2) moments, provides the results of the
QMMCC(2,6) quallty ?he QMMCC(2,5) method reduces the large, 30-120
millihartree, unsigned errors in the CCSD results in the R > 1.5R, region to
3.756 millihartree at R = 1.5R,, 1.415 millihartree at R = 1.75R,, 6.672 milli-
hartree at R = 2R,, and 2.638 millihartree at R = 2.25R,. We have, in fact,
discovered that we can completely ignore the most expensive M;';jf;;",’w (2) and

M3t (2) moments in the QMMCC(2,6) energy expression, eq (38),

13233940596
without changing the excellent description of the N, potential energy curve by
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Figure 1. Potential energy curves for the Nymolecule, as described by the
DZ basis set (113) (see refs 14, 16 and Table I for the numerical data;
see the text for further details).

the QMMCC(2,6) method. The errors in the QMMCC(2,6) results for N, in
which the hextuply excited M amsossas (2) moments are ignored, are virtually
identical to the small errors obtained in the complete QMMCC(2,6) calculations
(see Table I). There is a slight increase in the magnitude of errors when the pen-
tuply and hextuply excited moments are neglected, but the overall performance
of the QUMCC(2,6) approximation, in which M 224" (2) M jeses | (2) =0,
is very good. The potential energy curve of N,, obtained by performing the
QMMCC(2,6) calculations in which the pentuply and hextuply excited moments
are zeroed, is a monotonically increasing function in the entire R, < R < 2R,
region. The approximate dissociation energy D, obtained by forming the
difference between the QMMCC(2,6) M“,'l'j;’;;:f‘as 2)=0, M ;‘I‘j;’;;f"“,sas 2)=0)
energies at R = 2R, and R = R,, is 6.54 eV, in very good agreement with the full
CI D, value of 6.61 eV. The somewhat more complete QMMCC(2,6) cal-
culations, in which only the hextuply excited M 234% (2) moments are
zeroed, and the QMMCC(2,5) calculations produce the D, values, which are
only slightly more accurate than the value of D, resulting from the
QMMCC(2,6) M 2545 (2) = 0, M 234  (2) = 0) calculations (6.59 and
6.61 eV, respectively). Those are important and potentially very useful
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observations, since by neglecting the pentuply and hextuply excited moments of
the CCSD equations in the QMMCC(2,6) calculations, we are largely preserving
the relatively low cost of the CR-CCSD(TQ),b or QMMCC(2,4) calculations,
while considerably improving the results for large values of R.

As expected, the QMMCC(2,4) method does not provide any significant
improvements in comparison with the CR-CCSD(TQ),b approach. As shown in
Table I, the QMMCC(2,4) and CR-CCSD(TQ),b results are essentially identical.
In other words, we cannot ignore the TJ (7‘3‘2])f terms in the QMMCC(2,6)
energy expressions, although we can certainly ignore the corresponding
M ;‘:j;’;;zas (2) moments in eq (40). Our QMMCC(2,5) calculations imply that
we can also neglect the %[(T,m)' J* terms and the corresponding hextuply excited
M e (2) moments. The calculations for the N, molecule, reported in this
wori(, clearly reflect the accuracy patterns described by eq (45).

The above example demonstrates that the new QMMCC theory may allow
us to preserve the “black-box” character of the noniterative CC methods, while
giving us an opportunity to obtain a highly accurate description of ground-state
PESs involving multiple bond breaking. Interestingly enough, the QMMCC
formalism is powerful enough to provide us with the desired improvements in
the description of triple bond breaking in N,, in spite of the poor description of
the N, potential energy curve by the CCSD method. At this point we can only
speculate about this, but one might expect that the improvements in the results
offered by the QMMCC methods might be even more substantial if the values of
the T and T; cluster amplitudes, used to construct the QMMCC corrections to
the CCSD energies, were more accurate than the CCSD values. The alternative
methods of calculating the T, and 7; cluster components, which may help us to
develop the noniterative energy corrections that are even better than the
QMMCC corrections, are discussed in the next section.

Improving the T; and T, Components by the Extended
Coupled-Cluster Theory

We have recently begun experimenting with the alternative sources of
information about the T; and T; clusters that are needed to construct the standard
and MMCC or QMMCC noniterative energy corrections. One such source might
be provided by the ECC theory (//4-123) or by its modified variant described
in ref 124. The ECC methods are based on the idea of optimizing the cluster
operator T along with the auxiliary operator > by considering the energy
functional EECS(T, 7, eq (36).

As mentioned in the previous section, the major advantage of eq (36) over
the expectation value of the Hamiltonian with the CC wave function, which
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might also be considered as a way to find the optimum cluster operator T (28,
127), is the fact that the doubly connected expression EECS(Z, T), eq (36), is a
finite series in 7 and X' (the expectation value of the Hamiltonian with the CC
wave function is a nonterminating series in 7 and 7*). There are several other
advantages of using eq (36) and the related equations for T and 2 as means to
determine the cluster operator 7. For example, the ECC methods (//4-124) and
the related XCC approaches (/24-126) are capable of describing various higher-
order effects, including the effect of Ty clusters, even at the low levels of
approximation, such as ECCD or ECCSD. Those effects are being brought into
the ECC formalism as products of the low-order many-body components of st
and T and their powers. For example, an important part of the fifth-order effect
due to T, clusters, described by the Eg}) energy contribution, eq (43), appears in
the ECC theory in the form of the 1(®|(Z})’(V,T}}). |®) term, where X, is a
two-body component of ¥. This is possible, since the lowest-order MBPT
estimates of Y. and T are identical (see, e.g., refs /33, 134; cf., also, refs 124,
135, 136). The (®|(Z}?(VyT})c|®)term, which mimics the EG)
contribution, is present in the ECC energy, eq (36), already at the lowest ECCD
level, in which T = T, and ¥ = X, As pointed out in the Introduction, the effects
of high-order cluster components, such as T,, become very important in the bond
breaking region. We can, therefore, expect that the ECCD or ECCSD methods
provide improvements in the results of the standard CCSD calculations at larger
internuclear separations. Another advantage of the ECC theory over the standard
CC formalism is the fact that the cluster operator T of the ECC theory is
determined by solving a coupled system of equations for T and ¥, which are
treated as completely independent operators. This additional flexibility of the
ECC theory may help us to improve the T| and T, components in the bond
breaking region.

In this section, we examine the possibility of improving the quality of T,
and 7, components in the bond breaking region by solving the ECCSD equations
described in ref 124. The ECC formalism introduced in ref 124 is based on the
idea of rewriting the electronic Schrodinger equation for the CC wave function

I‘Po) eq (3), in the following doubly connected form:
H|®) = E,|D), (46)
where |®) is the IPM reference configuration and
H=¢" (eTHe' )e’v = Fet = (e‘v'fFI ) = [ezf (He" le @7

is the doubly transformed Hamiltonian, obtained by Ytransforming the CC
similarity transformed Hamiltonian A, eq (14), with e* . Eq (46) is obtained

In Electron Correlation Methodology; Wilson, A., el al.;
ACS Symposium Series; American Chemical Society: Washington, DC, 2007.



Publication Date: March 13, 2007 | doi: 10.1021/bk-2007-0958.ch004

Downloaded by TECHNISCHE UNIV MUENCHEN on October 23, 2009 | http://pubs.acs.org

60

by multiplying both sides of the connected cluster form of the electronic
Schrédinger equation, eq (13), on the left b & inserting eT et =1 between
H and |®)in eq (13), and replacing e” |®)in the resulting equation by
|<D) (this is possible since the deexcitation operator T and its positive powers
annihilate |®)).

Eq (46) alone is not sufficient to determine two different cluster operators T
and X. Thus, in addition to the right eigenvalue problem involving H , eq (46),
we consider the corresponding left eigenvalue problem,

(®|H = E, ()] 48)

The doubly transformed Hamiltonian H , eq (47), being non-Hermitian, has the
left-hand (bra) eigenstates, which may be different from the corresponding right-
hand (ket) eigenstates. In particular, the left-hand and right-hand ground states
of H, g@land|¢), respectively, are, for the general operators T and Y, the
completely different states. We can, however, impose an additional condition
that for the specific cluster operators 7 and ¥, used to construct H in the ECC
theory, <<f>| =(®|. This leads to the desired second equation for Tand ¥,

(0| = E) (o], (49)

which is the left-hand analog of eq (46).

Eqgs (46) and (49) are the basic equations of the ECC theory described in ref
124. The approximate ECC methods, such as ECCSD, are obtained by
truncating the many-body expansions of cluster operators T and Y at some
excitation level m,4 < N, so that T is replaced by 7, eq (4), and ¥ is replaced by

my
=33, (50)
n=1
where
L= ) o EM, 1)
<<,
aj<--<a,

n=1,..., m, are the many-body components of ¥“), and by projecting eqs (46)
and (49), with T = T" and ¥ = T, onto the manifolds of excitations generated
by 7% and T, For example, the ECCSD equations for the cluster amplitudes

",'| s 12:;2 s a;'l ,and a","},z defining Ty, T5, X, and X, (the m, = 2 case), can be

given the following form:

(@@ | AEP|0) =0 (52)

<¢a.a,

e | HECOP | @) =0, 4 <iy, @ <ay, (53)
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((D| ﬁECCSD

;! ) =0 (54)

(q)l ﬁsccso

o) =0, §<iy, @ <ay, (55)

[T
where
ﬁsccsn - ez,'n:; (e""'z He*h )e-zg-z;

(56)
tist — _vt_yt Tyt —
o™ +EE eosD,-tl-x] _ ( 2l+x] HCCSD)C,

with H°SP defined by eq (11), is the doubly transformed Hamiltonian of the
ECCSD approach. Once the system of equations for ¢, 112 , o) , and 0,2 is
solved, the ECCSD energy is calculated as follows (1245:

E(l)sccso - (d)l I__{-ECCSD| CD). (57)

Eq (57) can be obtained by projecting eq (46), with T= T, + Tyand Y=Y, + 3,
on reference |®).

A direct inspection indicates that the ECC theory of ref 124 and the original
ECC formalism of Arponen and Bishop (/14-123) are based on the same energy
expression (cf., e.g., eqs (36) and (57)). The difference between both theories is
in the method of obtaining T and Y. The original ECC formalism of Arponen
and Bishop is based on making the functional EE°“(Z,T), eq (36), stationary with
respect to T and 3., which is not the case in the ECC theory of ref 124. The ECC
theory of Arponen and Bishop is rigorously bi-variational, which is a very useful
feature in the calculations of energy derivatives and molecular properties (see,
e.g., refs 128, 137-145). The ECC theory of Piecuch and Bartlett (/24) is no
longer bi-variational, but it has several other interesting features, including the
completely symmetric treatment of the right-hand and left-hand ground states of
H (cf. eqs (46) and (49)). Those features are particularly useful in extending the
ECC theory to excited states (see ref 124 for further details).

As already mentioned, the applicability of the ECC theory, in which T'= T,
and ¥ = ¥, (the ECCD case) and in which the power series expansion of
EFC“(Z,7), eq (36), is terminated at the quadratic terms in X! (the QECCD or
QCCD (/28) approximation; cf. eq (37)), to triple bond breaking in N, and other
systems has recently been examined by Head-Gordon et al. (27, 28, 128, 129).
The analogous quadratic and cubic ECCSD schemes, in which T= T, + T,and ¥
=X, + X,, have been investigated for several years by Pal and others (/4/-145),
primarily in the context of property calculations. There are unanswered
questions though. For example, although the termination of the power series
expansion of EFC(,T), eq (36), at the quadratic terms in X' might be
necessary, since this reduces the scaling of the ECCD and ECCSD methods to n®
(28,128), other ways of simplifying the ECC functional, obtained by truncating
the many-body expansion of the doubly transformed Hamiltonian  , eq (47),
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defining the ECC energy (cf. eq (57)), are possible and may very well have to be
explored in the future (see ref 124 for the examples of the ECCSD methods
based on truncating the many-body expansion of H ). For the development of
those alternative ECC methods, it is important to know first how accurate the
complete ECCSD theory is in the calculations for multiple bond breaking. A
comparison of the complete and quadratic ECCSD (QECCSD) approximations
is important, too. In fact, it is useful to compare the entire sequence of the linear
(LECCSD), quadratic (QECCSD), and full ECCSD approximations. Since in
this preliminary study, we test the ECCSD method of ref 124, described by eqs
(52)(57), we define the LECCSD and QECCSD approximations by replacing
the doubly transformed Hamiltonian HE®SP | eq (56), in eqs (52)~(55) and (57) by

ﬁsccso =[1+ (2ccso )t] f!CCSD[l _ (zccsn )7] (58)
and

ﬁQECCSD = {l + (ECCSD )T + %[(ECCSD )T ]2 } HCCSD

(59)
x {l _ (zCCSD )Y + %[(ECCSD )f ]2}’

respectively, where Z°*° = ¥, + ¥,. In the preliminary calculations for N,
reported in this paper, we compare the LECCSD and QECCSD results, based on
eqs (58) and (59), respectively, with the results of the full ECCSD calculations,
employing eqs (52)-(57). We should emphasize that our QECCSD Hamiltonian
brings some additional terms, compared to other quadratic ECC approximations
studied earlier (27, 28, 128, 129, 141, 145). On the other hand, the LECCSD
method defined by eq (58) is not as rich in various nonlinear terms involving X' as
the ECC approximations studied previously, so that it is interesting to examine
how effective the above LECCSD and QECCSD methods are in improving the
standard CCSD results for triple bond breaking in N,. Finally, in their original
QCCD calculations for N, and a few other systems, Head-Gordon and co-workers
used the Brueckner orbitals obtained by maximizing the overlap of the reference
configuration |<b) with the exact, full CI, wave function (28, 128). Clearly, the full
CI Brueckner orbitals will never be used in any practical calculations. Thus, it is
worthwhile to examine how the full ECCSD, LECCSD, and QECCSD methods
perform when the standard RHF configuration is used as a reference.

As in the recent QCCD study by Head-Gordon et al. (28, 128), we tested
the ECCSD, LECCSD, and QECCSD methods, based on eqs (52)~(59), using
the minimum basis set STO-3G (/46) model of N,. In all correlated calculations,
the lowest two core orbitals were kept frozen. As in the earlier section, our
discussion of the results focuses on the bond breaking region, where the
standard CCSD approach displays, using a phrase borrowed from ref 128, “a
colossal failure” (see Table II and Figure 2).
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Table I1. Ground-state energies of the N, molecule, as described
by the STO-3G basis set (146)°
R FullCl CCSD QECCSD ECCSD (CCSD)* (QECCSD)° (ECCSD)*
1.0 -5.208400 0.319 0298 0298 0298 0.298 0.298
1.5 -0.279883 1.102 0.885 0.885 0.890  0.888 0.888
2.0 0.623240 3.295 1.897 1.897 2.004 1.946 1.946
25 0.651880 9.220 3442 3428 4316 3.775 3.775
3.0 0546614 13.176 3908 3.758 5.288  4.160 4.161
3.5 0473442 -38.645 5322 4746 16.755  3.387 3.388
4.0 0447822 -140.376 15968 14.122 80.696  7.206 7.145
4.5 0441504 -184.984 27.769 24.039 95.003 11.506 11.277
5.0 0.439549 -200.958 35.732 30.390 91.561 13.877 13.327
5.5 0.438665 -206.974 40.491 33.867 86.652 14.931 14.224
6.0 0.438265 -209.538 43.227 35.746 83.037 15.356 14.553
7.0 0.438054 -211.915 45595 37.306 79.607 15.571 14.724
8.0 0.438029 -213.431 46.320 37.799 78.563 15.578 14.758

?The CC and ECC energies are in millihartree relative to the corresponding full CI
energy values. The full CI energies E are reported as — (E + 107) in hartree. The lowest
two occupied orbitals were frozen in the correlated calculations.

® The N-N separation in bohr. The equilibrium R value is 2.068 bohr.

¢ (X) (X = CCSD, QECCSD, ECCSD) is the expectation value of the Hamiltonian with
the "2 |¢) wave function, where T, and T, are obtained with method X (cf. eq (60)).

The results in Table II and Figure 2 demonstrate that the complete ECCSD
formalism of ref 124, in which all nonlinear terms in ¥ and T are included, and
its quadratic QECCSD variant, defined by the truncated Hamiltonian A QECCSD |
€q (59), provide great improvements in the poor description of the potential
energy curve of N, by the standard CCSD approach. The huge negative errors in
the CCSD results at larger internuclear separations R > 4.5 bohr, of about -200
millihartree reduce to the relatively small positive, 24-38 millihartree (ECCSD)
or 28-46 millihartree (QECCSD), errors. The considerable reduction of errors is
also observed for the intermediate and small values of R, including the
equilibrium, R =~ 2.0 bohr, region (see Table II). The QECCSD and ECCSD
methods are capable of eliminating the unphysical behavior of the CCSD
method at larger N-N distances, restoring, in particular, the variational
description of the potential energy curve of N, at all internuclear separations (see
Figure 2). The fact that the ECCSD method of Piecuch and Bartlett is not
rigorously bi-variational seems to be of the secondary importance, since our
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QECCSD results are of the same quality as the bi-variational QCCD results for
N, reported by Van Voorhis and Head-Gordon (128). The presence of the
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Figure 2. Potential energy curves for the Nymolecule, as described by the
STO-3G basis set (146) (see Table Il for the numerical data).

quadratic terms in &' in A0 and FECC | eqs (56) and (59), respectively,
and the flexibility of the ECC theory, resulting from the fact that there are two
independent cluster operators in the ECC formalism, 7 and 3., are a lot more
important for improving the description of the bond breaking region by the
ECCSD and QECCSD methods than the particular way of obtaining the t'
""3, , o' ,and o":’ amplitudes that defines the ECC formalism of Piecuch and
Bartlett. The importance of the quadratic terms, such asl[(ZCCSD)f]ZH CCSD and
L FCSP[(ZCSPY | can be seen by comparing the QECCSD and LECCSD
results. The LECCSD method does not have the 1[(Z°*°)')> #°*Pand
1 ACSP[(ZCPy 2 terms in the corresponding Hamiltonian 77-65C5P , eq (58),
and in consequence, the LECCSD potential energy curve of N, has the same
type of hump for the intermediate values of R as the CCSD curve (see Figure 2).
On the other hand, we observe a considerable reduction of errors at larger N-N
separations, when the CCSD approach is replaced by the LECCSD method. This
shows once again that the use of two independent cluster operators, T and %, in
the ECC theory is very important for improving the poor CCSD results at larger
internuclear separations.
The considerable improvements in the description of triple bond breaking in
N,, offered by the QECCSD and ECCSD approaches, suggest that the 7 and T
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clusters obtained in the QECCSD and ECCSD calculations must be much better
than the 7; and T; clusters obtained by solving the standard CCSD equations.
This can be seen by calculating the expectation values of the Hamiltonian with
the normalized CCSD-like wave functions

I?{,‘ ) = NXli 1 |®), (X =CCSD, QECCSD, ECCSD),  (60)

designated by (X), where 7;* andT;¥, X = CCSD, QECCSD, and ECCSD, are
the T and T; clusters obtained with the CCSD, QECCSD, and complete ECCSD
methods, respectively, and N* = (<D|e"'x I o7y |¢D'” 2)-1/2. Clearly, all
three expectation values, (CCSD), (QECCSD), and (ECCSD), corresponding
to the 7} and T; clusters obtained in the CCSD, QECCSD, and complete ECCSD
calculations, respectively, are upper bounds to the full CI energies. However, as
shown in Table II, the (CCSD) energies remain poor at larger N-N separations,
whereas the expectation values of the Hamiltonian calculated with the QECCSD
and ECCSD wave functions, |¥JECCSD andl;,}‘thCSD), respectively, are very
close to the corresponding full CI energies. When the QECCSD and ECCSD
energy expressions, based on eq (57), are replaced by the expectation values of H
calculated with the QECCSD and ECCSD wave functions, the 28-46 and 24-38
millihartree errors in the QECCSD and ECCSD energies in the R > 4.5 bohr
region reduce to 11-16 millihartree (see Table II). Thus, by solving the QECCSD
or ECCSD equations and by simply replacing the QECCSD and ECCSD energy
expressions by the expectation values of the Hamiltonian calculated with the
QECCSD and ECCSD wave functions, |¥3EC¢SP zand ‘POQECCSD), respectively,
we can obtain the potential energy curves of N,, which are not only qualitatively
correct, but which are also close to the full CI curve.

The fact that the T and T; clusters obtained by solving the QECCSD and
ECCSD equations are significantly better than the T, and T; clusters resulting
from the standard CCSD calculations can also be seen by calculating the
overlaps of the normalized CCSD, QECCSD, and ECCSD wave functions
‘L\‘POCCSD , lI‘P(?ECCSD , |WECCSPY and, respectively, as defined by eq (60), with

e normalized full CI' wave function (™) for different values of R (see
Figure 3 (a)). As shown in Figure 3 (a), the overlap between the CCSD and full
CI wave functions, which is close to 1.0 in the vicinity of the equilibrium
geometry (R =~ 2.0 bohr), decreases to ~ 0.93 for larger N-N separations. This
should be compared with the fact that the overlap between the QECCSD or
ECCSD and full CI wave functions varies between 0.98 and 1.00 in the entire R
region.

The significant differences between the CCSD and ECCSD (or QECCSD)
values of the T; and 7 clusters at larger internuclear distances that result in the
observed huge differences between the behavior of the CCSD and ECCSD (or
QECCSD) methods in the bond breaking region are shown in Figure 3 (b). In
general, if Y and Z are two excitation operators, defined by the amplitudes y J
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and z, respectively (¢} and £ for the T operator and o, and o, for the 2
operator), we can define the quantity

d(Y,z)= /z(y,_z,y, 61
J

which provides us with a measure of how different or how similar the two
operators Y and Z are. When Y = Z, we obtain d(Y, Z) = 0. For operators Y and Z,
which are characterized by the similar values of amplitudes ysand zJ, d(Y, Z) is
close to 0. Otherwise, the value of d(Y, Z) is considerably greater than 0.

- . 0.9
100 0.8
7
0.98 R gs
T B %4‘0.—0.-.1#51. —~ °
e g 0.5
& 0 X=CCSD
i, 096 vx=qeccsp | T 04
> 4 X=ECCSD 0.3
= 094 0.2
() 0.1
092 .0
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Ry.x (bohr) Ry.x (bohr)

Figure 3. (a) The overlaps of the CCSD (O), QECCSD (V), and ECCSD (L)
wave functions with the full CI wave function for the STO-3G (146) model of N..
(b) The difference between the CCSD and ECCSD cluster operators T (O) and
the difference between the ECCSD cluster operators T and ¥ (O), as defined by
eq (61), for the STO-3G (146) model of N,.

As shown in Figure 3 (b), the CCSD and ECCSD cluster operators T are very
similar only for smaller values of R. This explains why the CCSD and ECCSD
wave functions, |¥5°)and, "chcs") respectively, and the corresponding
energies (particularly, the expectation values of the Hamiltonian calculated with
WEOSP) and [WECSSP)) are virtually identical for smaller values of R The
CCSD method provides slightly better results in the equilibrium region, when
compared to the standard CCSD approach (primarily due to the presence of
selected higher-order terms, such as Eg}) , €q (43), in the ECCSD energy), but
the differences between the overall performance of the CCSD and ECCSD
methods for R ~ 2.0 bohr are rather small (see Table II and Figure 2). The
situation changes when the triple bond in N, is stretched. For R > 3.0 bohr, the
difference between the CCSD and ECCSD operators T dramatically increases
(see Figure 3 (b)). This results in a completely different behavior of the CCSD
and ECCSD theories for stretched nuclear geometries: the CCSD method
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completely fails, whereas the ECCSD approach provides reasonable results.
Figure 3 (b) illustrates another important feature of the ECCSD theory, namely,
the similarity of the 7 and X operators in the equilibrium region and the sig-
nificant difference between the T and Y. operators obtained in the ECCSD
calculations in the region of stretched nuclear geometries. As already mentioned,
the lowest-order MBPT estimates of X and T are identical, so that 2 = T in the R
~ 2.0 bohr region, where the MBPT series rapidly converges. The situation
changes, when the convergence of the MBPT series is slow or when the MBPT
series diverges, as is the case when the N-N bond is stretched. In this case, the
operators X, and T can be quite different. The optimization of two different
cluster operators 7 and X in the ECCSD calculations allows us to obtain much
better results than those provided by the conventional CCSD method, in which
only one cluster operator is considered. This additional flexibility of the ECCSD
theory results in much better 7, and T values, when compared with their CCSD
counterparts, and significant differences between T and 3. shown in Figure 3 (b).

We can summarize our preliminary findings by stating that the QECCSD
and ECCSD approaches, based on the general ECC formalism of ref 124,
represent interesting new alternatives for accurate electronic structure cal-
culations of molecular PESs involving bond breaking. The QECCSD and
ECCSD methods remove the failing of the standard CCSD approach at larger
internuclear separations and provide reasonable values of the T, and T; cluster
amplitudes in the bond breaking region, in spite of using the poor RHF
reference. The fact that the QECCSD method provides the results of the full
ECCSD quality implies that we may be able to come up with practical
computational schemes for molecular PESs involving bond breaking, based on
the ECC formalism of ref 124, by simply dropping higher-order nonlinear terms
in the ECCSD equations. In the future, we will consider other ways of
simplifying the ECCSD formalism by truncating the many-body expansion of
the doubly transformed operator H5°? | eq (56).

Summary and Concluding Remarks

We described a new hierarchy of the QVMMCC and QMMCC approx-
imations, which, in analogy to the renormalized and completely renormalized
CC methods (9, 13-18, 20, 21), represent “black-box™ approaches for the
ground-state PESs involving bond breaking. The QMMCC methods are based
on the idea of adding the relatively simple noniterative corrections to the
standard CCSD energies. The QMMCC corrections are constructed using the T}
and T; clusters obtained in the CCSD calculations. By performing the test
calculations for the potential energy curve of N,, we showed that the QMMCC
approximations can provide considerable improvements in the standard CC and
CR-CC results for more complicated cases involving multiple bond breaking.
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We will continue testing the QMMCC methods by performing the calculations
for other systems and larger basis sets.

The new QVMMCC and QMMCC methods are related to the ECC theory,
in which products involving cluster operators and their deexcitation counterparts
are used to mimic the effects of higher-order clusters. We examined the
performance of the ECCSD theory of ref 124 and its linear and quadratic
variants. We showed that the complete and quadratic ECCSD methods,
employing the ground-state RHF determinant as a reference, provide great
improvements in the poor description of multiple bond breaking by the standard
CCSD approach. We demonstrated that the QECCSD and ECCSD potential
energy curves for N, have qualitatively correct shapes and that we can reduce
the ~ 200 millihartree unsigned errors in the CCSD results for stretched
geometries of N, by a factor of 4-5 by performing the complete or quadratic
ECCSD calculations. We discovered that the T, and T, cluster amplitudes
resulting from the QECCSD and ECCSD calculations provide a very good
description of the electronic wave function, independent of the nuclear
geometry. The QECCSD and ECCSD values of the T, and T; cluster amplitudes
turned out to be so accurate that the potential energy curves of N,, obtained by
calculating the expectation values of the Hamiltonian with the corresponding
wave functions e’*"2|®), are qualitatively as well as quantitatively very good.
This intriguing finding shows that we may be able to further improve the quality
of the ECC results by exploiting the energy expressions, which are not
necessarily related to the equations used to determine the cluster operators T'and .

Our results imply that the ECC methods may allow us to formulate new
classes of accurate and easy-to-use single-reference methods for bond breaking.
By having an access to very good T and T; cluster amplitudes, resulting from
the QECCSD or ECCSD calculations, we should be able to propose simple
noniterative corrections to the ECCSD or QECCSD energies, which may
provide further improvements in the results in the bond breaking region. We
may be able to suggest the desired corrections by employing the MMCC
formalism. As shown in this study, the MMCC theory is capable of describing
multiple bond breaking, even when the 7, and T cluster amplitudes originate
from the failing CCSD approach. It is, therefore, logical to expect that more
accurate values of the 7 and T; cluster amplitudes, originating from the ECCSD
calculations, will help us to improve the CR-CC and QMMCC results at larger
internuclear separations in multiply bonded systems.
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Chapter 5

Bond Breaking in Quantum Chemistry: A
Comparison of Single- and Multi-Reference Methods

C. David Sherrill, Antara Dutta, Micah L. Abrams,
and John S. Sears

Center for Computational Molecular Science and Technology,
School of Chemistry and Biochemistry, Georgia Institute of Technology,
Atlanta, GA 30332-0400

Standard and new quantum chemical methods are evaluated
for their ability to provide accurate potential energy curves for
chemical reactions which break or form bonds. Comparisons
to full configuration interaction benchmark results demon-
strate that even high level single-reference methods such as
unrestricted coupled-cluster with single, double, and
perturbative triple substitutions [UCCSD(T)] can have large
errors for bond breaking processes: nonparallelity errors for
breaking bonds to hydrogen, which should be one of the
simplest theoretical problems, are around 3-4 kcal mol.
Multi-reference methods are much more reliable but are also
more computationally expensive. New, minimalist config-
uration interaction methods for bond breaking in larger
molecules are also discussed which dramatically improve on
similar earlier models.

The Bond Breaking Problem

The vast majority of quantum chemical studies focus on equilibrium prop-
erties. However, a detailed understanding of chemical reactions requires a
description of their chemical dynamics, which in turn requires information about
the change in potential energy as bonds are broken or formed. Even though
modern electronic structure theory can provide near-spectroscopic accuracy for
small molecular systems near their equilibrium geometries, the general
description of potential energy surfaces away from equilibrium remains very
much a frontier area of research.
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Nearly all of the commonly used quantum chemical methods are ultimately
based upon Hartree-Fock molecular orbital theory, which describes the motion
of each electron in the average field of all the other electrons. This introduces an
error because in reality the motions of electrons are correlated. Short-range
electron correlation, referred to as “dynamical” correlation, is well described by
the hierarchy of many-body perturbation theory and coupled-cluster methods.
However, long-range electron correlations, referred to as “nondynamical”
correlation, are also important and become crucial for a proper description of
bond breaking processes. At the dissociation limit, the energy due to
nondynamical correlation can be /arger than the energy due to dynamical
correlation (/).

The origin of this nondynamical correlation is that as bonds are broken, it is
no longer true that a single electron configuration is sufficient as a zeroth-order
wavefunction. It is well known that Hartree-Fock with restricted orbitals is
incapable of providing qualitatively correct potential energy curves for bond
breaking reactions. For the H, molecule, for example, the (ag)2 electron
configuration is appropriate at equilibrium, but at dissociation, the o, and o,
orbitals become degenerate, necessitating an equivalent treatment of the (ag)2
and (0))" configurations which is not provided by Hartree-Fock theory.
Although additional configurations such as (o) are added to the wavefunction
via standard “single-reference” correlation methods, for larger molecules the
selection of additional configurations will be imbalanced because they are
generated relative to the single Hartree-Fock reference only. A completely
balanced treatment of electron correlation would require, for example, all single
and double excitations out of all near-degenerate electron configurations. Such
an approach is an example of a multi-reference method.

Although multi-reference methods are capable of accurately describing
bond breaking processes in principle, they are very difficult to formulate,
implement, and apply. Typically, their computational cost is prohibitive for all
but the smallest molecules. Additionally, they can require seemingly arbitrary
choices of reference configurations or active spaces. Hence, continued
development of methods for bond breaking has emphasized both more efficient
multi-reference methods as well as generalized single-reference methods.

Within the scope of single-reference methods, there are two obvious,
complementary strategies to attack the bond breaking problem. First, one may
simply include more and more electron configurations (e.g., triple, quadruple
substitutions) to approach the limit in which all possible configurations are
included. Unfortunately, the computational cost of this strategy increases
rapidly. Second, one may abandon restricted orbitals in favor of unrestricted
orbitals. Unrestricted Hartree-Fock (UHF) provides qualitatively correct
dissociation curves for molecules in which a single bond is broken, even though
it can be quantitatively poor. By adding sophisticated treatments of electron
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correlation, one might hope to obtain quantitatively good potential energy
curves. However, using unrestricted orbitals introduces spin contamination, and
the wavefunction is no longer an eigenfunction of the total spin operator. Any
spin-dependent properties will no longer be properly predicted.

One of the most important steps in the development of new methods for
bond breaking reactions is the calibration of the method against reliable
benchmark results. Unfortunately, these benchmarks are very hard to obtain. In
the general case, there is no simple way to obtain entire potential energy curves
directly from experiment; hence, theoretical benchmarks are required. This
problem may be addressed by solving the electronic Schrédinger equation
exactly within the Bom-Oppenheimer approximation, using the full
configuration interaction (FCI) model. Because the computational cost of full CI
increases factorially with the number of electrons or orbitals, it can be used only
for the smallest chemical systems. Nevertheless, advances in algorithms and
computer hardware have recently made it possible to obtain full CI potential
energy curves for a few small molecules (2-5). In particular, Olsen and co-
workers have presented very enlightening benchmark curves for several
electronic states of N, (5, 6) and full CI energies for five points along the double
dissociation of H,O (3). A number of standard theoretical methods, including
many-body perturbation theory and coupled-cluster theory, were compared to
the full CI results. Benchmark curves such as these are essential for calibrating
new theoretical methods meant to provide accurate potential energy curves (7-
12).

At present, there remains a scarcity of high quality full CI potential energy
curves. While Olsen and co-workers have focused on the most challenging cases
of double and triple bond breaking, we have examined (/3,/4) more typical
cases which should also be less challenging for standard methods. Various
single- and multi-reference methods have been compared to our benchmark full
Cl results. We find rather large errors in even the most advanced of the standard
single-reference methods. Results for the multi-reference methods considered
are much improved.

Whether accurate results can be obtained for bond breaking using com-
putationally inexpensive methods remains an open question. One new strategy,
described elsewhere in this volume, is the spin-flip approach of Krylov and co-
workers (12, 15, 16). This is a single-reference approach which attempts to
avoid the usual pitfalls of such methods by using a high-spin (M; = 1) triplet
reference state to generate determinants appropriate for a ground state singlet
(M, =0) potential energy curve. Of course generating a M; =0 determinant from
an M; = | determinant requires a spin flip, and hence the name of the method.
The motivation for this approach is the supposition that the M, = 1 triplet state is
easier to describe at the Hartree-Fock level across the whole potential energy
curve. At its simplest level, only single (spin-flipping) excitations are allowed
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relative to the high-spin triplet reference; this is called the SF-CIS or SF-SCF
method, and it is meant to give singlet potential energy curves with an accuracy
roughly comparable to that of the Hartree-Fock approach, except that this
accuracy is now roughly uniform across the entire curve. Improvements can be
made by including various models of dynamical electron correlation (/2, 16).
One drawback of this approach is that the wavefunctions it generates are not
spin eigenfunctions. We have recently examined (/7) the effect of adding the
requisite determinants to obtain spin eigenfunctions, and we find that this makes
dramatic improvements.

An Assessment of Single-Reference Methods

The performance of standard single-reference electronic structure methods
has not been fully assessed for bond breaking reactions because full config-
uration interaction benchmarks are not widely available for entire potential
energy curves. In recent work (/3), we have obtained full CI potential energy
curves for breaking single bonds. In particular, we have used the DETCI program
(18) in the PSI3 (19) package to obtain benchmark full CI curves for breaking a
bond to hydrogen in BH, HF, and CH, using the basis sets aug-cc-pVQZ, 6-
31G**, and 6-31G*, respectively. We prefer the latter Pople basis sets among
standard polarized double zeta sets because they give the best predictions of
molecular properties at the full CI level (20). Methods compared include
Hartree-Fock theory, second-order Mpller-Plesset perturbation theory (MP2)
(21); coupled-cluster with single and double substitutions (CCSD) (22); and
coupled-cluster with single, double, and perturbative triple substitutions
[CCSD(T)] (23). We have also examined the B3LYP gradient-corrected hybrid
density functional theory model (24,25). Both restricted and unrestricted orbitals
have been used.

Our results were qualitatively similar for the BH, HF, and CH, molecules,
so we will focus here on CH, as a representative case. The single-reference
potential energy curves are compared to full CI in Figure 1, in which one C-H
bond is stretched while the other geometrical parameters are held constant. One
immediately notices the well-known failure of restricted Hartree-Fock (RHF) at
large bond lengths; this is caused by the presence of unphysical, high-energy
ionic terms in the RHF energy which may be removed by employing
unrestricted orbitals or by using an appropriate multiconfigurational self-
consistent-field (MCSCF) approach (26).

Unfortunately, the failure of RHF is so severe that none of the correlated
methods based upon it are able to overcome it (except, of course, full CI). The
MP2 curve diverges to negative infinity at the dissociation limit because of a
near-degeneracy between the highest occupied and lowest unoccupied molecular
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Figure 1. Potential energy curves for CH, in a 6-31G* basis using restricted
orbitals. (Data from reference 13.)

orbitals, and the perturbative treatment of triple substitutions in CCSD(T) also
causes it to fail at large bond lengths. The density functional theory method
B3LYP is seen to suffer the same fate as Hartree-Fock when the orbitals are
restricted: energies for large bond lengths are much too large. Of all restricted
methods considered, only CCSD provides results which are qualitatively correct,
but the quantitative error at large bond lengths is around 12 kcal mol ™.

One might hope that highly correlated methods employing an unrestricted
Hartree-Fock reference might be able to overcome these difficulties, since UHF
gives a qualitatively correct (if quantitatively poor) description of bond
breaking. Results for UHF references are plotted in Figure 2, where the
acronyms for methods have been prefixed by ‘U’ to denote unrestricted orbitals.
The UHF curve levels off too quickly with increasing bond length
(underestimating the dissociation energy); however, the UCCSD and
UCCSD(T) curves appear close to the full CI benchmark curve. Similarly,
although UB3LYP provides energies much lower than full CI for this basis set,
the potential energy curve has a shape close to that of full CI. Since relative
energies, not total energies, are the only relevant quantity for chemical reactions,
we are only concerned with how well the curves parallel the full CI results. Of
the correlated methods, only UMP2 provides a curve which is qualitatively
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different from full CI. The UMP2 energy clearly rises too rapidly in the
intermediate bond breaking region, between about 1.6 and 2.2 A.

A more detailed examination of the errors in the approximate single ref-
erence methods for CH, is provided in Figure 3, which plots errors vs. full CI as
a function of bond length. A completely flat error curve would be perfectly
parallel to the full CI curve and would provide exactly the same predictions for
properties such as bond length, harmonic frequency, dissociation energy, etc.
Note that restricted and unrestricted curves coincide before a certain bond length
which depends on the method. While all the approximate restricted methods
except CCSD have very large errors near dissociation, the unrestricted methods
have their largest errors in the intermediate region. This error is very large for
UMP2, rising from around 15 kcal mol” near equilibrium to more than 30 kcal
mol” in the intermediate bond breaking region. At these geometries, the UMP2
error is larger than that for restricted MP2.

Besides CCSD, the only methods with small errors are UCCSD and
UCCSD(T). In order to help quantify the errors, we have computed the so-called
non-parallelity error (NPE), which is the magnitude of the difference between
the largest and smallest errors along the potential energy curve. A curve
perfectly parallel to full CI would have a constant error across the potential
energy curve, and therefore an NPE of zero. NPE values for CH,, as well as BH
and HF, are presented in Table 1. The NPEs for CCSD, UCCSD, and
UCCSD(T) for CH, are 10.3, 5.1, and 3.2 kcal mol™, respectively. None of these
errors are small enough to claim that these methods provide “chemical
accuracy,” which is commonly taken to mean errors in relative energies of about
1-2 kcal mol”. This is perhaps surprising since one might expect breaking a
bond to a hydrogen atom would be one of the easiest possible bond breaking
problems.

Table 1 shows that the errors for CH, are fairly similar for the BH and HF
molecules. UCCSD(T) provides the best results in all cases, yet the error never
drops below 3 kcal mol™'. UCCSD is the only alternative if one desires even a
modest accuracy of + 10 kcal mol™.

An Assessment of Multi-Reference Methods

By treating all near degenerate electron configurations on an equal footing,
multi-reference methods are capable of handling the bond breaking problem,
albeit at an increased cost in theoretical complexity and computer time. We have
recently compared (/4) several multi-configurational reference functions and
multi-reference methods based upon them for bond breaking in a few simple
molecules including the cases considered above: BH, HF, and CH,. In this
section we will discuss our general findings and examine CH, in particular.

In Electron Correlation Methodology; Wilson, A., el al.;
ACS Symposium Series; American Chemical Society: Washington, DC, 2007.



Downloaded by TECHNISCHE UNIV MUENCHEN on October 23, 2009 | http://pubs.acs.org

Publication Date: March 13, 2007 | doi: 10.1021/bk-2007-0958.ch005

82

E-Egqq (keal mol™)

Table 1: Non-parallelity error (NPE, kcal mol™’) for BH,

HF and CH, molecules.

Method BH HF CH,
RHF - - -
MP2 - - -
CCSD 8.1 12.9 10.3
CCSD(T) 233 - -
B3LYP n/a 66.7 63.0
UHF 27.1 47.8 274
UMP2 17.9 259 17.1
UCCSD 4.7 6.0 5.1
UCCSD(T) 3.1 3.7 3.2
UB3LYP n/a 5.9 11.4
CASSCF 94 18.0 6.3
CASPT2 1.8 1.6 0.7
CISD[TQ] 0.3 53 1.3
SOCI 0.3 5.3 0.3

1200

NOTE: n/a denotes data not available, dashes denote very large or

divergent errors.

SOURCE: Data from Refs. 13, 14.
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Figure 4: Errors in potential energies for CH, in a 6-31G* basis using
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multi-reference methods. (Data from reference 14.)
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Figure 4 presents results for breaking a C-H bond in CH, obtained with
several multi-reference methods. First, we have used the complete-active-space
self-consistent-field (CASSCF) method (26), which includes all possible
electron configurations which can be generated in a subset of orbitals termed the
“active space.” We have used the space of all valence orbitals as our active
space; this choice should allow CASSCF to describe any bond breaking process
at least qualitatively correctly by including all configurations which could
become near-degenerate. The CASSCF errors plotted in the figure have been
shifted down by 40 kcal mol™ for an easier comparison with the other methods.
The error is largest around equilibrium, and flattens out at large distances. This
happens because the dynamical electron correlation, not described properly by
CASSCEF, is larger at short distances, where more electrons are closer together.

The next method considered is CASPT2 (27), which adds a second-order
perturbation theory treatment of dynamical correlation on top of the qualitatively
correct treatment of nondynamical correlation in CASSCF. The CASPT2 curve
is much closer to full CI, as indicated by a much flatter error curve in Figure 4.
The nonparallelity errors of CASSCF and CASPT2 in Table 1 are 6.3 and 0.7
kcal mol” for CH,, and these are seen to be fairly typical of the molecules
considered (errors for HF are larger because a valence active space for that
molecule includes only a single antibonding orbital). This NPE for CASSCF is
roughly comparable to that of CCSD, but it should be pointed out that CASSCF
is more robust for these problems and is less likely to fail for more challenging
cases. The CASPT? results are superior to any of the single-reference methods
considered above.

To obtain an even greater accuracy, one might turn to multi-reference
configuration interaction or multi-reference coupled-cluster methods. These
approaches are typically less straightforward to apply than CASSCF or
CASPT?2, because in addition to the active space, one may also need to choose
thresholds or reference determinants. We favor multi-reference methods that
choose determinants in a simple, a priori fashion, such as in the restricted active
space configuration interaction (RASCI) approach of Olsen et al. (28). Here, we
have looked at a particular multi-reference CI approach which can be formulated
as a RASCI, which is the so-called second-order CI (SOCI). This method
generates all single and double excitations from every determinant in a CASSCF
wavefunction. Unfortunately, this procedure generates a tremendous number of
determinants, and few SOCI computations have been performed. For this
reason, we have also considered an approximation to SOCI in which all
determinants which would be considered more than quadruple excitations
relative to the dominant Hartree-Fock reference determinant are discarded. This
approach, introduced by Schaefer and co-workers (29-37), is designated
CISD[TQ)] because it includes all single and double substitutions but only some
triples and quadruples. This wavefunction can also be formulated in the context
of a RASCIL.

In Electron Correlation Methodology; Wilson, A., el al.;
ACS Symposium Series; American Chemical Society: Washington, DC, 2007.



Downloaded by TECHNISCHE UNIV MUENCHEN on October 23, 2009 | http://pubs.acs.org

Publication Date: March 13, 2007 | doi: 10.1021/bk-2007-0958.ch005

84

The SOCI and CISD[TQ)] curves for CH, are so close to full CI that they are
difficult to distinguish from full CI or from each other. However, they may be
examined more clearly in the error curves in Figure 4, which display very flat
errors for SOCI, while CISD[TQ)] errors increase gradually with increasing bond
length. This suggests that some of the triple, quadruple, or higher excitations
present in SOCI but neglected in CISD[TQ] are becoming important at large
bond lengths. This is perhaps surprising in that, for CH,, there should be only
two dominant configurations at large bond lengths, and the CISD[TQ]
wavefunction certainly includes these as well as all single and double excitations
from each of them. On the other hand, the wavefunction also includes more
triples and quadruples relative to the configuration dominant at equilibrium than
to the antibonding one which becomes degenerate at the dissociation limit,
suggesting a possible minor imbalance in the method. At any rate, the absolute
errors for CISD[TQ] and SOCI are much smaller than for any other methods
considered here, and their nonparallelity errors for CH, are very impressive at
1.3 and 0.3 kcal mol”, respectively. These methods should prove extremely
reliable for any single bond breaking process where they can be afforded, and in
principle, SOCI is capable of breaking any number of bonds simultaneously.

Minimalist Configuration-Interaction Approaches

As the above test cases demonstrate, the most sophisticated treatments of
electron correlation are the most successful at describing bond breaking
processes. However, it is important to ask whether one can formulate much
simpler, less computationally demanding approaches which might still describe
bond breaking accurately.

As discussed in the introduction, the spin-flip technique (12, 15, 16) is one
attempt to adapt standard single-reference electronic structure methods in a
simple way to be more appropriate for bond breaking. The simplest of these
models, SF-SCF (also called SF-CIS), obtains singlet wavefunctions from a
high-spin triplet reference by generating all single substitutions which flip a
single spin from a to B. One drawback of this approach as originally formulated
is that the generated set of determinants does not include all determinants
necessary to form eigenfunctions of $°. Recently, two of us (C.D.S. and J.S.S.)
implemented the ability to obtain the spin-complete analogues of SF-SCF,
denoted here SC-SF-SCF, into our group’s DETCI program. One advantage of
our implementation is that it decouples the orbitals used from the identity of the
reference determinant. Hence, it is possible to generate spin-flipped singlet
determinants relative to a triplet “reference” determinant but use, for example,
closed-shell singlet orbitals. This allows us to examine the effects of orbitals
separately from the selection of determinants.
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Table 2: Equilibrium bond lengths and dissociation
energies for the F, molecule with a DZP + basis set.’

Method R, D,
RHF* 1332 10.69
CCSD* 1.410 2.36
UCCSD® 1.410 0.95
SF-SCF! 1.567 0.28
SC-SF-SCF (singlet orbitals)®  1.469 1.29
SC-SF-SCF (tnplet orbitals) ¢ 1.448 1.37
SF-C[S(D) 1.429 1.14
SF-OD* 1.437 1.24
VOO-CCD(2Y 1.417 1.51
MR-CISD® 1.435 1.22
Expt. 1412 1.66

Spin-flip approaches used a *Z, reference.
Computed at A(F-F) = 100 bohr.
“Reference 32. “Reference 12.

“Reference 17./Reference 9.

Having spin complete wavefunctions dramatically improves the accuracy of
the SF-SCF method. One of the most striking examples of this is for the very
challenging F, molecule, considered in Table 2. As usual, the RHF approach is
incapable of properly dissociating the molecule and gives unreasonable
dissociation energies. Even single-reference CCSD methods perform very badly
for this difficult case (32), giving good bond lengths but very poor dissociation
energies, in contrast to the reasonable performance of CCSD for breaking single
bonds to hydrogen atoms discussed above. Multi-reference CISD and the VOO-
CCD(2) model (8) both give good results for this case (9, 32), considering the
limited basis set used.

Although SF-SCF improves sngmﬁcantly over the unphysical results of
RHF, nevertheless its performance is poor, overestimating r, by .15 A and
predicting a dissociation energy of 0.28 eV compared to an experimental value
of 1.66 eV. The spin-complete alternative, however, gives much better results:
the error in the bond length is reduced by about two thirds, and the dissociation
energy becomes much more reasonable around 1.3 eV. In this case, triplet
orbitals are more effective than singlet orbitals, giving dissociation energies of
1.37 eV vs. 1.29 eV. Closer agreement with experiment requires a treatment of
dynamical electron correlation. Since SF-CIS(D) was found to improve so
dramatically over simple SF-SCF, we anticipate perturbative corrections for
dynamical correlation in our spin-complete version should be even more effec-
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tive. It should be noted that the most extensive spin-flip model considered for
this problem, SF-OD, gives results (/2) which rival MR-CISD for this case.

A perhaps more typical comparison of SF-SCF and its spin-complete
alternative is presented in Figure 5, which presents potential energy curves for
the HF molecule. One sees that using spin complete wavefunctions reduces the
error in the SF-SCF energies by roughly 2/3 at large distances.
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Figure 5: Potential energy curves for HF in a 6-31G basis.
(Data from reference 17.,)

We anticipate that continued development of minimalist models, in con-
junction with more efficient multi-reference approaches and a wider array of
benchmark curves, will result in a better understanding of the theoretical
challenges of bond breaking processes and increased ability of electronic
structure theory to model them.
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Chapter 6

Breaking the Curse of the Non-Dynamical
Correlation Problem: The Spin—Flip Method

Anna L. Krylov, Lyudmila V. Slipchenko, and Sergey V. Levchenko

Department of Chemistry, University of Southern California, Los
Angeles, CA 90089-0482

The spin-flip approach to multi-reference situations (e.g.,
bond-breaking and diradicals) is described. Both closed and
open shell singlet states are described within a single reference
formalism as spin-flipping, e.g., @ —/f excitations from a
triplet (M,=1) reference state for which both dynamical and
non-dynamical correlation effects are much smaller than for
the corresponding singlet state. Formally, the new theory can
be viewed as an Equation-of-Motion model where excited
states are sought in the basis of determinants conserving the
total number of electrons but changing the number of « and f
electrons.

Introduction

It is difficult to overestimate the importance of electronic structure theory in
modern chemistry (7). The design and interpretation of experiments are often
aided by high-level ab initio calculations of structural, thermochemical, and
spectroscopic properties. Additional insight can be derived from the examination
of wavefunctions and electron distributions which are produced in electronic
structure calculations. Most importantly, high-level calculations can now be
carried out almost routinely due to the availability of efficient and user-friendly
electronic structure packages. However in order for electronic structure
calculations to be accessible by the general chemical community, the underlying
methods should belong to the class of the so called “theoretical model
chemistries” (2), or, more loosely, “blackbox” methods.
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As defined by Pople, “theoretical model chemistry” consists of a pair of
well-defined approximations to the exact wavefunction: correlation treatment
and one-electron basis set (2). Figure 1 summarizes a hierarchy of approximate
methods for correlation treatment (3,4) in the ground and excited states. Both the
ground state’s (left panel) and excited states’ (right panel) series converge to the
exact solution, and the accuracy of the description improves with each additional
step of sophistication (at. the price of increased computational cost, of course).
Fortunately, chemically and spectroscopically relevant answers can be obtained
within computationally tractable (for moderate-size molecules) models. For
example, the coupled-cluster model with single and double excitations (5)
augmented by triple excitations treated perturbatively [CCSD(T)] (6) yields
highly accurate structural (errors in bond lengths of 0.2-0.3 pm) and
thermochemical (errors of less than 1 kcal/mol in reaction enthalpies) data (3).
Excitation energies can be calculated with 0.1-0.3 eV accuracy (7) by the
excited states’ counterpart of CCSD, EOM-CCSD method (8-70).
Unfortunately, the above error bars are valid only for species whose ground
state wavefunction is dominated by a single Slater determinant and for excited
states dominated by single electron excitations. This restricts the applications of
single-reference (SR) models to well-behaved molecules such as closed-shell
species at their equilibrium geometries, leaving many chemically important
situations [e.g., transition states, bond-breaking, and diradicals (/7)] to the
domain of multi-reference methods (72).

In order to understand the origin of the breakdown of the SR methods away
from equilibrium, consider the torsional potential in ethylene (Figure 2). While
at its equilibrium geometry ethylene is a well-behaved closed-shell molecule
whose ground and z-valence excited states can be described accurately by SR
models (except for the doubly excited Z-state), it becomes a diradical at the
barrier, when the n-bond is completely broken (/3). Thus, at the twisted
geometry all of ethylene’s n-valence states (N, 7, V, and Z) are two-
configurational, except for the high-spin components of the triplet.

The traditional recipe for computing ethyelene’s torsional potential for the
ground and excited states would involve state-by-state (or state-averaged)
calculations with the two-configurational SCF (TCSCF) method, the simplest
variant of complete active space SCF (CASSCF) (/4-16) further augmented by
perturbation theory (MRPT) or configuration interaction (MRCI) corrections
(12). Recently, this scheme has been reformulated (/7-/9) employing less
expensive coupled-cluster wavefunctions instead of the exponentially expensive
CASSCF one. The method, valence optimized orbitals coupled-cluster doubles
(VOOCCD) (18), is formulated in a SR fashion, however it still (i) relies on an
active space selection (20); (ii) involves an orbital optimization step; (iii)
requires subsequent inclusion of higher order corrections in a two-step
procedure (/9); and (iv) is not easily generalized for excited states (27). In this
Chapter, we discuss an alternative strategy, the spin-flip (SF) approach, which is
a multistate method (i.e., yields several states in one computation), does not
require an active space selection and orbital optimization (thus, is genuinely a
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Ground state models: Excited state models:
SCF: Y=0g|0,..0,> ¥_=R, ¥, (CIS)
MP2: SCF + T,byPT CIS + R, by PT [CIS(D)]
CCSD: W=exp(T;+T,) ®, ¥_=(R,+R,)¥, (EOM-CCSD)
CCSD(T): CCSD +T; by PT
CCSDT: W=exp(T,+T,+T;) ®, ¥ =R, +R;+R;)¥, (EOM-CCSDT)

FCL: ¥=(14T+T, + ... +T, J®, - exactl

Figure 1. The hierarchy of approximations to an n-electron wavefunction.
The left panel presents models of increasing complexity for ground state
wavefunctions. The emerging hierarchy of excited states’ methods is sum-
marized on the right panel. The simplest possible description of an N-
electron wavefunction is given by a single Slater determinant composed of
spin-orbitals, i.e., states of pseudo-independent electrons moving in the field
of nuclei and a mean field of other electrons [self-consistent filed (SCF), or
Hartree-Fock (HF) model]. The effects of electron interaction (i.e., corre-
lation) can gradually be turned on by including single, double, and higher
excitations (T, T,, etc). This can be done perturbatively, e.g, as in the
Moller-Plesset theory (MP), or explicitly, e.g., as in coupled-cluster (CC)
methods. The corresponding excited states' models can be derived within
the linear response (LR) or equation-of-motion (EOM) formalisms. The
resulting wavefunctions have a physically appealing form: excited states are
described as electronic excitations from approximate ground state wave
Sunctions (the operator R, generates all possible m-electron excitations out
of the reference determinant ®y). For example, the SCF analog for excited
states, the configuration interaction singles (CIS) model, describes excited
states as a linear combination of all singly excited determinants. Similarly to
the ground state models, accuracy can systematically be improved by in-
cluding higher excitations. Both series converge to the exact solution of the
Schrodinger equation (in a given one-electron basis set) — full configuration
interaction (FCI), which, in turn, becomes exact in the limit of the complete
one-electron basis set.

robust “black-box” type SR method), and treats both non-dynamical and
dynamical correlation in one scheme (i.e., is not a two-step procedure).

As mentioned above, the M, =1 components of the T-state of ethylene
(Figure 2) are single-determinantal at the ground state equilibrium geometry, and
remain single-determinantal at all values of the twisting angle. Therefore, they can
be accurately described by SR methods at all the torsional coordinates (22).
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Figure 2. Around equilibrium, the ground state (N-state) wavefunction of
ethylene is dommaled by the n? configuration. However, as a degeneracy
between ™ and " develops along the torsional coordinate, the importance
of the (x')* confi iguration increases. At the barrier, where & and ©* are
exactly degenerate, the qualitatively correct wavefunction for the N-state
must include both configurations with equal weights. That is why the
quality of the SR wavefunctions degrades as the molecule is twisted: even
when the second configuration is explicitly present in a wavefunction (e.g.,

as in the CCSD or CISD models), it is not treated on the same footing as
the reference configuration, o The singlet and triplet nxc” states (the V and
T states, respectively) are formally single-electron excitations from the N-
state, and are well described by the SR excited states’ models (despite the
fact that both the singlet and the M; =0 component of the triplet are two-
configurational and therefore are not accessible by the ground state SR
methods). The Z-state, however, is formally a doubly excited state with
respect to the N-state, and therefore SR models will not treat it accurately.

Note that the high-spin M, = £1 components of the triplet T-state remain
single-determinantal at all the torsional angles. Moreover, all the M; = 0
configurations employed in the N, V, T, and Z states are formally single-

electron excitations which involve a spin-flip of one electron with respect
to any of the two high-spin triplet configurations.
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Moreover, all the low-spin M,= 0 determinants from Figure 2 are formally single
electron excitations from the high-spin triplet state involving a spin-flip of one
electron. This immediately suggests employing the EOM or LR formalism and
describing the target M, = 0 states as spin-flipping excitations from the well-
behaved high-spin reference state. This is the essence of the SF approach (23-29).

It should be mentioned that describing ground state wavefunctions as
“excited” states with respect to a reference state which is orthogonal to a target
wavefunction is a well known approach. For example, the ionized states EOM-
CCSD methods have proven very useful for doublet radicals whose theoretical
treatment is often plagued by symmetry breaking. In this approach, the ground
state CC equations are solved for a closed shell cation or anion, and the ground
state of the corresponding doublet radical is sought in the basis of determinants
which do not conserve the number of electrons e.g., either in N-1 (EOM
ionization potential CC [EOMIP-CC]), or in N+1 (EOM electron affinity CC
[EOMEA-CC)) electron basis (30-32). Recently, doubly-ionized/attached EOM
models which target diradicals have been presented (33).

The Method

In traditional (non-SF) SR excited states models, the excited state wave-
functions are parameterized as follows (see Figure 1):

A

W o= Ry 0¥ o )

where P u,=0 i8 a closed-shell reference wavefunction, and the operator R is an
excxtatlon operator truncated at a certain level of excitation (which should be
consistent with the theoretical model employed to describe the reference ¥*).
Note that only excitation operators that do not change the total number of  and
Pelectrons, i.e. M= 0, need to be considered in Eq. (1).

As explained in the Introduction, this scheme breaks down both for ground
and excited states when orbitals from occupied and virtual subspaces become
near-degenerate, e.g. at the dissociation limit or in diradicals (see Figure 2). To
overcome this problem, the SF model employs a high-spin triplet reference state
which is accurately described by a SR wavefunction. The target states, closed
and open shell singlets and triplets, are described as spin-flipping excitations:

~

‘P:I’ =0 = ‘kM =—I\Y’M =+]? (2)

[} s s

where ‘P m,=n 1S the ara component of the triplet reference state, ‘I’M .o Stands
for the final (M,= 0) singlet and triplet states, respectively, and the operator
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A

R,, __, is an excitation operator that flips the spin of an electron. In order to
distinguish R, _, excitation operators from their non-spin-flipping

counterparts, we shall denote m-electron excitation operators with a spin-flip of
one electron as U,, instead of R,. As can be seen from Figure 2, all the
configurations used to describe diradical-type wavefunctions (e.g., N, ¥, T, and
Z states of ethylene) are formally single excitations with respect to the high-spin

component of the triplet (jnan’« >).

Figure 3 shows the reference high-spin configuration and the spin-flipping
single and double excitations for two electrons in three orbitals system.
Configuration (b) corresponds to a ground-state closed shell singlet. Con-
figurations (c)-(e) are those which become degenerate with (b) at the disso-
ciation limit. They are employed in a description of diradicals states, e.g., states
which can be derived by distributing two electrons over two (nearly) degenerate
orbitals (N, ¥, T, and Z states of twisted ethylene are of this type). It is easy to
see that (b)-(e) are treated on an equal footing in our model, and that other
configurations do not introduce imbalance in treating (b)- (e).

Therefore, the SF ansatz (2) is sufficiently flexible to describe changes in
ground state wavefunctions along a single bond-breaking coordinate. Moreover,
it treats both closed-shell (e.g., N and Z) and open-shell (¥ and T) diradicals’
states in a balanced fashion, i.e., without overemphasizing the importance of one
of the configurations.

Similarly to traditional excited state theories, the description of the final
states can be systematically improved by employing theoretical models of
increasing complexity for the reference wavefunction as summarized in Figure
4. For example, the simplest SF model employs a Hartree-Fock wavefunction,
and the operator U is then truncated at single excitations (SF-CIS or SF-SCF)
(23, 29). SF-CIS can be further augmented by perturbative corrections [SF-
CIS(D) or SF-MP2] (24). A yet more accurate description can be achieved by
describing the reference wavefunction by a coupled-cluster model, e.g., CCSD
(28) or OO-CCD (23, 34). In this case, the excitation operator R consists of
single and double excitation operators involving a flip of the spin of an electron
(23). The corresponding SF equations in spin-orbital form are identical to those
of traditional excited state theories i.e., CIS, CIS(D), EOM-CCSD or EOM-OO-
CCD, however, they are solved in a different subspace of determinants: non-SF
theories consider only M;=0 excitation operators, whereas SF operates in the
M,=-1 subspace. The computational cost and scaling of the SF models are
identical to those of the corresponding non-SF excited state theories.

Two of the SF models, SF-CISD and SF-DFT, deserve special mention. By
using the SF formulation, the CI can be formulated in a rigorously size-
consistent way (25, 29). For example, the SF-CISD model is (i) variational, (ii)
size-consistent, and (iii) exact for two electrons. So far, this is the only
approximate model [except for fully variational CCSD (35) which is
prohibitively expensive to be of a practical use] that simultaneously satisfies
these three highly desirable properties (2).
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Figure 3. Two electrons in three orbitals system. Configuration (a) is the
reference configuration. Single electron excitations with spin-flip produce
configurations (b)-(g). Two-electron excitations with a single spin-flip produce
configurations (h)-(j). Note that non-spin-flipping excitations or excitations that
Alip the spin of two electrons produce M,=+1 configurations, which do not
interact through the Hamiltonian with the final M,=0 states, and thus are not
present in the model.

Reference: Method: Wavefunction:

SCF SF-SCF (or SF-CIS) U, ®,

MP2 SF-MP2 [or SF- CIS(D)] U, ®,+T, by PT

CCSD SF-CCSD (U,+Uexp(T,+T,)D,
CCSDT SF-CCSDT (U,+U,+U,)exp(T,+T, +T;)®,

Figure 4. Hierarchy of the SF models. Similar to the non-SF SR methods, the SF
models converge to the exact n-electron wavefunction when the spin-flipping
operator U includes up to n-tuple excitations. For example, the SF-CCSD model
is exact for two electrons

Lastly, the SF approach implemented within the time-dependent. (TD)
density functional theory (DFT) extends DFT to multi-reference situations with
no cost increase relative to the non-SF TD-DFT. Similarly to DFT and TD-DFT,
the SF-DFT model (27) is formally exact and therefore will yield exact answers
with the exact density functional. With the available inexact functionals, the SF-
DFT represents an improvement over its non-SF counterparts. It has been shown
to yield accurate equilibrium properties and singlet-triplet energy gaps in
diradicals (27).
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The Spin-flip Method for Bond-breaking: the Ethylene
Torsional Potential

Figure 5 shows the torsional potential calculated by the SF [SF-CIS, SF-
CIS(D), and SF-OD] and non-SF (restricted and unrestricted HF and OD)
methods (23, 24, 36). All curves are compared with the TC-CISD curve (24).
The unbalanced treatment (within a single reference framework) of (n)*and (n")?
configurations results in unphysical shapes of the PES, i.e., a cusp at 90° and
large errors in barrier heights. The spin-unrestricted PESs are smooth; however,
the barrier height is usually underestimated, even by the highly correlated
methods (36). Moreover, the shape of the unrestricted PES can be quite wrong,
for example, the U-OD curve is too flat around the barrier as compared against
the TC-CISD one (see Figure 5). Also, the UHF based wavefunctions are
heavily spin-contaminated around the barrier even for highly correlated methods
such as coupled-cluster models (36). All the SF models produce smooth PESs.
Quantitatively, SF-SCF represents a definite advantage over both the RHF and
UHF results. Similarly, the SF-OD curve is closer to our reference TC-CISD
curve than either R-OD or U-OD. The SF-CIS(D) curve is very close to the
more expensive SF-OD one. Similar performance of the SF methods has been
observed for bond-breaking in HF, BH, and F, (23-25).

018 v T T
—— TC-CISD
0.16 o— RHF
o——o UHF
»——e R-0OD
0.14 o U-OD
+——s SF-CIS
v 0.12 +—— SF-CIS(D)]
g +——a SF-0D
- 010
1]
g
d 008
0.06 +
0.04
0.02 A . +
30 60 90 120 150
Tarsion angle, deg

Figure 5. Ethylene torsion, DZP basis. All curves are shifted such that the
energy at 0°is zero. The spin-flip curves do not exhibit an unphysical cusp and
are closer to the reference TC-CISD curve than the corresponding spin-
restricted and spin-unrestricted models.
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The Spin-flip Method for Diradicals

Diradicals represent the most clear-cut application of the SF approach
because in these systems the non-dynamical correlation derives from a single
HOMO-LUMO pair (e.g., @ and n_ in twisted ethylene). In this section we
present results for methylene and trimethylenemethane (TMM).

Four low-lying states of methylene are diradical-type states (/7) deriving
from the distribution of two electrons in the two nearly degenerate orbitals, 3a,
(s"p” hybrid) and 15, (out-of-plain p-orbital). The ground state of methylene is

triplet X'B,:

X°B ~(1a) (24,) (18,) (34,)(15,) A3)

The lowest singlets are:

a4 ~n(1a) (24) (18, (3a ) —v1-2* (1) (24 ) (18,)' (18" (4)
b'B ~(1a)) (24) (1,) (34,)(18,) (5
&4 ~ \/1—-_#(1a, ) (24)) (16,) (3a,) +1(14,)" (24,) (18,)' (18,)° (6)

While the aa (M,=1) component of the X ’B. state (3) is essentially a single-
reference wave function, the corresponding singlet 5'B, state (as well as the
M,=0 component of the triplet) is a linear combination of two Slater
determinants with equal coefficients. Therefore, l;'Bl state cannot be described
within a formalism that uses a single Slater determinant reference. The character
of the lowest singlet, d'4,, varies from a single-reference (A = 1) to the two-
configurational (x ~--) wave function. At the 4'4, equilibrium geometry, the
effect of the second configuration is relatively small, and the a'4, state can be
reasonably well described by SR models. The second '4, state, &'4, can be
described as a doubly excited state with respect to @'4;. At its equilibrium
geometry, the ¢&'A4 state requires a two-configurational wave function.
Therefore, it is not possible to describe all three singlet states of methylene by a
single-reference model. The spin-flip model, however, describes all these states
as spin-flipping excitations from the reference M,=I triplet X 3Bl state.

For this small system, we can compare the performance of different meth-
ods against the FCI results (37) in a relatively large TZ2P basis. Calculated
equilibrium geometries, vibrational frequencies, and adiabatic singlet-triplet
gaps for the singlet states of methylene are shown in Table 1. The SF models
describe accurately all three singlet states. SF-CIS(D) represents a qualitative
improvement over SF-CIS, while the SF-CCSD and SF-OD results follow FCI
closely.
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Table 1: Equilibrium geometries, harmonic vibrational frequencies
(cm™), and adiabatic excitation energies (eV) for singlet methylene
(d'A4,,b'B,, and ¢' A, states)".

Method I, A a oya)  oxa)  oxb) AE,
a'A,
FCU/TZ2P’ 1.1089 101.89 2899 1404 2971 0.483
SF-SCF/TZ2P 1.0945 104.07 3096 1485 3176  0.883
SF-CIS(D)/TZ2P 1.0974 102.86 3017 1443 3111 0.613
SF-OD/TZ2P 1.1043 102.37 2932 1422 3025 0.514

SF-CCSD/TZ2P _ 1.1040 10245 2937 1421 3011 _ 0.517
b'B,

FCUTZ2P® 1.0748  141.56 3136 1006 3470  1.542
SF-SCF/TZ2P 1.0624 14238 3311 1103 3611  1.875
SF-CIS(D)/TZ2P  1.0652 141.59 3243 1082 3546  1.646
SF-OD/TZ2P 1.0716 14132 3160 1028 3424  1.564

SF-CCSD/TZ2P 1.0716 14132 3162 1034 3420 1.565
-~
C A

FCUTZ2P® 1.0678 170.08 3200 666 3531 2.674
SF-SCF/TZ2P 1.0507 17448 3446 343 3809  3.599
SF-CIS(D)/TZ2P 1.0544 173.73 3374 416 3727 2953
SF-OD/TZ2P 1.0639  170.14 3238 672 3555 2715

SF-CCSD/TZ2P 1.0639  170.14 3240 677 3581  2.718

?TZ2P basis set from Ref. (37). SF models employ the X 3Bl ground state as the
reference. The SF-CIS, SF-CIS(D), and SF-OD results are from Refs. (24, 25). A E;, are
calculated at the FCI/TZ2P optimized geometries.

b Ref. (37). One frozen core and one deleted virtual orbital.

Our next example, the TMM diradical, is a more challenging case because
its frontier orbitals are exactly degenerate. The n-system of TMM is shown in
Figure 6: four n-electrons are distributed over four molecular n-type orbitals.
Due to the exact degeneracy between the two e’ orbitals at the Dy, structure,
Hund’s rule predicts the ground state of the molecule to be a triplet 344 state
(similar to the T-state in ethylene). This is confirmed by both the experimental
and theoretical findings (38-43).

The vertical excitation energies are summarized in Figure 6 (with C,
symmetry labels) (26,44). The three lowest singlet states are the diradical singlet
states (similar to the N, ¥, and Z states of ethylene). However, excited states that
derive from excitations of other n electrons are also relatively low in energy.
The first closed-shell singlet, 'A, and the open-shell singlet 'B, (similar to the N
and V states of ethylene, respectively) are degenerate at the D geomeu'y due to
the degeneracy of a, and 2b, orbitals. The second closed-shell smglet 2! A. (an
analog of the Z-state) is followed by a pair of degenerate triplets, A, and ’B,,
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Figure 6. On the right, the n-system of TMM and the electronic configuration of
the ground state are shown (C», labels are used). The left panel presents electronic
states of TMM at the ground state equilibrium Dy, geometry, and at the two Jan-
Teller C,, distorted structures (equilibrium geometries of the 1'B, and 1'A, states).
The corresponding adiabatic singlet-triplet gaps are also shown.

obtained by excitation of one electron from the doubly occupied 15, orbital to
the a, or 2b, degenerate orbitals. Finally, there is a quintet 3B, state in which all
n-orbitals are singly occupied. We do not discuss low-lying states derived from
electron excitations beyond the TMM’s n-system. Several such states appear
between the pair of degenerate triplets and the quintet state. The SF-OD model
should be augmented by higher excitations to achieve a quantitatively accurate
description of these states.

In accordance with the Jahn-Teller theorem, the degeneracy between the
degenerate states (closed-shell and open-shell singlets, and a pair of triplets) can
be lifted in lower symmetry. The closed-shell singlet is stabilized at the planar
C,, geometry, with one short CC bond. The open-shell singlet prefers an
equilibrium structure with one long CC bond and a twisted methylene group.
The real minimum of the open-shell singlet is a C, structure with a 79.0° twisted
methylene group; however, the energy difference between this structure and the
C,, twisted one (the dihedral angle equals 90.0°) is only 0.001 eV (0.03
kcal/mol). The second '4; state prefers Dy, equilibrium geometry. The adiabatic
singlet-triplet energy separations for the three lowest singlet states are 0.74 eV,
0.94 eV, and 3.86 eV for the 1'B,, 1'4,, and 2'4, states, respectively (26) (at the
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SF-OD level with the basis set composed of a cc-pVTZ basis on carbons and a
cc-pVDZ basis on hydrogens). These energies are very close to the MRPT
values (26) of 0.72 and 0.83 eV (for the 1'B, and 1'4, states, respectively). With
regard to experiment, the lowest adiabatic state, 1'B,, has not been observed in
the photoelectron spectrum (40) because of unfavorable Frank-Condon factors.
The experimental adiabatic energy gap (including ZPE) between the ground
triplet state and the 1'4, state is 0.70 eV. The estimated experimental 7, is 0.79
eV, which is 0.15 eV lower than the SF-OD estimate.

In our detailed benchmark study (26), we calculated the singlet-triplet
energy separations for a large number of systems, i.e., O,C, and Si atoms, O,,
NH, NF, and OH" diatomics, methylene isovalent series (CH,, NH",, SiH,, and
PH",), benzynes, and TMM. In all these cases, the SF models performed very
well. The SF-OD results are within 3 kcal/mol of the experimental or highly
accurate multi-reference values. In most cases the errors are about 1 kcal/mol.
Drawing from the performance of single-reference methods for well-behaved
molecules, we expect that a perturbative account of triple excitations will bring
the corresponding SF-CC model into the chemical accuracy range, ie., < 1
kcal/mol.

Conclusions

The SF approach extends the applicability of SR methods to bond-breaking
problems and to diradicals. Both closed and open shell singlet states are
described within a single reference formalism as spin-flipping, e.g., a —2,
excitations from the triplet (M,=1) reference state for which both dynamical and
non-dynamical correlation effects are much smaller than for the corresponding
singlet state. Formally, the new theory can be viewed as an EOM model where
the excited states are sought in the basis of determinants conserving the total
number of electrons but changing the number of « and S electrons. A very
attractive feature of the new approach is that it is described by equations
identical to the EOMEE equations (in spin-orbital form).

This work has been supported by the Camille and Henry Dreyfus New
Faculty Awards Program, the James H. Zumberge Faculty Research and
Innovation Fund of the University of Southern California, the WISE Research
Fund (USC), the Petroleum Research Fund administered by the American
Chemical Society (types G and AC), and the National Science Foundation
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Economical Description of Electron Correlation
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Methods are presented for reducing the computational effort
required to account for electron correlation in large molecules.
The correlation recovery is divided into two stages: Recovery
of zeroth-order dynamic correlations and dynamic correlation
refinements. The former is achieved through MCSCF
wavefunctions related to full valence spaces. A method is
developed for the a-priori elimination of the configurational
deadwood from such wavefunctions. Although orbital-
independent, the procedure is most effective in conjunction
with the use of appropriately localized molecular orbitals.
Applications to the molecules HNO, OCO and NCCN show
that drastic shortenings of the CI expansions (e.g., from
776,316 to 43,038 SDTQ determinants in NCCN) raise the
energy by less than 1 mh. For the determination of the
dynamic correlation energy, on the other hand, a model is
developed that leads to an additive expression in terms of pair
populations of localized orbitals multiplied by correlation
energy contributions of electron pairs within and between such
orbitals. This simple formula predicts the valence correlation
energies of about 50 organic molecules with a mean absolute
deviation of about 2 kcal/mol. Contributions of nonadjacent
localized molecular orbitals are found to be near negligible.
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1. Introduction

Reliable studies of chemical problems require that electron correlation be
taken into account. For small systems ab initio results can be obtained at a high
level of correlation and they accurately reproduce experimental data (/,2).
Correlated studies of large systems, like DNA or periodic solids are however
difficult because of the drastic increase in the computational effort for many
accurate correlated methods. Although simple correlated wavefunctions such as
the valence-bond approach (3) have yielded noteworthy predictions, such as
providing simple rules for the occurrence of unpaired n-electron density near
graphitic edges (4,5), most quantitative studies of chemical interest require
sophisticated ab-initio approaches. The least expensive correlated approach
appears to be density functional theory (6-8) and it is the only widely used
method so far for extended systems. Unfortunately, even its most current
functionals encounter difficulties in properly describing certain structures and
properties of interest, such as the band gap or ionization potential in
polyacetylene (9). Moller-Plesset (MP2) perturbation theory or coupled-cluster
theory (10) are considered to be more accurate (/7). However, MP2 scales
fonnally as N° and coupled cluster singles and doubles (CCSD) method scales
as N° where N is the number of basis functions. The most widely used
vanatlonal approach, the configuration interaction (CI) method (/2,13), scales
even more steeply with N.

Since these algorithmic scalings are considerably in excess of what one
would conjecture from physical reasoning (/4), some recent work has explored
ways of reducing the computational effort. Saebe and Pulay (15, 16) have shown
the usefulness of localized orbitals for efficient correlated methods. Most often
these orbitals are utilized in the context of MP2 or coupled-cluster theories (76-
18). Since the level of treatment of electron correlation between such orbitals is
usually associated with the spatial distance between them (/6-20), the
arbitrariness in specifying this distance may cause discontinuities when mapping
geometry changes. Within the context of variational methods, Buenker and
Peyerimhoff (2/-23) rather early developed a method for generating effective
truncated CI expansions by iterative single-plus-double excitations from
reference spaces, and there have been further advances along these lines (24-32).
It has also been recognized for a long time that it is essential to account for up to
at least quadruply substituted configurations in correlation energy calculations
(33,34).

In the approach pursued here, the recovery of correlation is perceived as a
two-stage process: First, the determination of a zeroth-order approximation in
form of a MCSCF wavefunction that is in some way related to the full valence
space and determines the molecular orbitals; then, the determination of
refinements that recover the remaining dynamic correlation. Section 2 of this
paper deals with the elimination of all configurational deadwood from full
valence spaces. In Section 3, a simple approach for obtaining an accurate
estimate of the dynamic correlation is discussed.
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In section 2, a method is described for selecting a priori only those
configurations that are needed to achieve milli-hartree accuracy in the full
valence space (35). It involves an appropriate ordering of the configurations and
a truncation criterion based on a reliable truncation error estimate. The most
effective reduction of CI expansions is obtained by using appropriately localized
MO’s rather than natural orbitals. The selection method does not involve an
explicit judgment regarding inter-orbital distances. The method is contingent
upon a recent determinantal code for performing direct CI calculations with
arbitrary configuration selections (36,37). While the presented applications are
limited to molecules at equilibrium geometries and to SDTQ-CI expansions, we
expect that the method can be extended to reaction path following and to the
inclusion of quintuple and sextuple excitations. The selection procedure can also
be applied beyond full-valence CI spaces.

In Section 3, we discuss a method for the accurate estimation of the
dynamic electron correlation energy. We find that, for equilibrium geometries of
singlet ground states, the total, mostly-dynamic correlation energy can be
predicted by an extremely simple formula that contains bonding information and
correlation strengths between localized molecular orbitals (38). Due to the short-
range character of the dynamic correlation the main contributions to the
dynamic correlation energy come from the intra-orbital electron correlations,
and from the inter-orbital electron correlations between adjacent orbital pairs.

2. A Priori Elimination of Configurational Deadwood from
Full Valence Spaces in Large Molecules

2.1 Formulation of objective

In the present section we address the problem of identifying a priori the
most compact expansion for the zeroth-order wavefunction. If non-dynamic
electron correlation is insignificant (39-47), this is the SCF approximation, but
in the presence of non-dynamic correlation it is a limited MCSCF (42-47)
expansion. There is some freedom in the zeroth-order wavefunction in as much
as it may be expedient for it to include also some dynamic correlation. Zeroth
order MCSCF functions that are in some way based on full configuration spaces
generated by the formal minimal valence basis orbitals (FORS = full optimized
reaction space model) have proven particularly useful for the reliable description
of chemical processes on potential energy surfaces (44-47). But even with the
severe orbital restriction of this model, such configuration spaces still rapidly
outgrow current computational capabilities with increasing molecular size and
this leads to the problem of reducing the dimensions of full valence
configuration spaces for large systems.
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The number N, of occupied valence SCF orbitals in a molecule is typically
less than the total number N, of orbitals in the minimal valence basis sets of all
atoms. The full valence MCSCF wavefunction is the optimal expansion in terms
of all configurations that can be generated from N, molecular orbitals. Closely
related is the full MCSCF wavefunction of all configurations that can be
generated from N, orbitals, where N, is the number of valence electrons, i.e.
each occupied valence orbital has a correlating orbital, as first postulated by
Boys (48) and also presumed in perfect pairing models (49,50). We shall call
these two types of full spaces FORS 1 and FORS 2. In both, the inner shell
remains closed.

A standard way of reducing the size of the resulting configuration spaces is
to include only those valence orbitals as configuration generators that are
considered to be “active” in the electronic rearrangements occurring in a
particular reaction. This option, which has proven extremely fruitful, always
exists and we shall not elaborate on it further. Rather, the focus of our interest
will be the fact that full valence spaces, even if reduced as just mentioned,
typically contain large amounts of “deadwood , i.e. configurations whose
omission will result in a deterioration of the energy by less than, say, 1 mh or
even 0.1 mh. Our aim is to identify and select the minimum number of “live”
configurations a priori, i.e. without having to do the full-space calculation.

A well-established effective approach to generating a rapidly converging
configurational expansion consists of dividing the molecular orbitals into
strongly and weekly occupied ones. In the simplest cases, the former are those
occupied in the SCF wavefunction and the latter are the remaining orbitals. The
configurations can then be generated by single, double, triple, quadruple etc.
excitations from the strongly to the weakly occupied molecular valence orbitals.
In this configurational grouping the contributions are known to rapidly decrease
with increasing excitation level, so that excitations beyond the sextuple level are
rarely needed, and up to quadruple excitations (“SDTQ-CI”) are very often
satisfactory. We shall adopt this approach here.

The number of quadruple, quintuple and sextuple excitations is however
still a very large number for a zeroth-order wavefunction and even these
configuration spaces still contain more dead than live wood. Our goal is
therefore the development of a method for a priori identifying and selecting the
latter. It will be achieved by

(i) Identifying a set of molecular orbitals that yields a rapid convergence
for the full configurational expansion (full configuration spaces are
invariant under nonsingular transformations of the generating orbitals),

(ii) Predicting for the full expansion at each excitation level, the sequence
of configurations in the order of decreasing importance.

(iii) Predicting the cut-off in this full expansion such that the corresponding
truncation will result in an energy error of less than a given threshold,
typically less than 1 mh.
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In the following, we discuss the method that has been developed for SDTQ-CI
type wavefunctions (35). Quintuple and sextuple excitations will be the subject
of future investigations.

The method has been tested for the FORS 1 and FORS 2 wavefunctions of the
molecules HNO, OCO and NCCN, i.e. by calculating the “live parts” of the
following MCSCF wavefunctions: SDTQ-[12/9] and -[12/12] for HNO; SDTQ-
[16/12] and -[16/16] for OCO;: SDTQ-[18/16] and [18/18] for NCCN. All
configurational expansions were expressed in terms of determinants and calculated
with the direct full CI and general CI codes of Ivanic and Ruedenberg (36,37).
Dunning’s triple-zeta cc-pVTZ AO bases (5/) were used on all atoms. The
calculations were performed with the GAMESS molecular program system (52).

2.2 Orbital determination
Strongly and Weakly Occupied Approximate FORS Molecular Orbitals

" The first step is the determination of a good approximation to the FORS
orbital space without a full valence space MCSCF calculation. The following
procedure has proved successful (35). First, the SCF wavefunction is
determined. Then, the SD-CI wavefunction is calculated in the determinantal
space of all single and double excitations from the occupied to the virtual SCF
orbitals. Finally, the natural orbitals of this wavefunction are found. If the FORS
wavefunction is to be based on M molecular orbitals, then the M natural orbitals
with the highest occupation numbers are being chosen as first approximations to
FORS configuration space generators. The MCSCF improvement of these M
orbitals will be performed at the very end, after completion of the
configurational truncation procedure.

Next, the M identified SD-CI natural orbitals are separated into two groups,
the strongly and the weakly occupied NOs. In the systems considered here, this
distinction was straightforward since all occupation numbers were either larger
than 1.90 or smaller than 0.1. One could therefore have chosen the occupied
SCF orbitals as the strongly occupied FORS MOs and determined “virtual
natural orbitals” by diagonalizing only that sub-block of the SD-CI first-order
density matrix that is spanned by the virtual SCF orbitals. Then, the (M-Mscr)
virtual NOs with the highest occupation numbers would be the weakly occupied
FORS MOs. We found however that, even in these systems, the NOs from the
full SD-CI density matrix yielded somewhat better configurational convergence
properties.

Split-Localized FORS Molecular Orbitals

There exists a widespread presumption that configurations generated from
natural orbitals will yield the most rapid configurational convergence. For the
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configuration spaces considered here, certain types of localized orbitals are
however found to be considerably more effective in this respect. They are those
obtained by localizing the strongly and the weakly occupied FORS orbitals
separately without mixing the two kinds of orbitals. We shall call them split-
localized FORS molecular orbitals. While the strongly occupied ones
(SOLMOs) are typically extremely similar to the standard localized SCF
orbitals, each of the weakly occupied ones (WOLMOs) is located in the same
region as one of the SOLMOs but with one nodal surface cutting through the
center of the latter. They correspond to what Frank Boys used to call “main
oscillatory orbitals” (48). For a bonding SOLMO the corresponding WOLMO is
the anti-bonding orbital; for a lone-pair SOLMO the WOLMO is simply the
lowest correlating orbital. The latter occur only for N-electrons-in-N-orbitals
wavefunctions.

For such localizations to be effective in the present context, those orbital
symmetry constraints that would prevent maximal localization in larger
molecules must be abandoned. For instance, in the NCCN molecule, C,,
symmetry can be preserved during the localization process, but not left-right
mirror symmetry. We have used Raffenetti’s (53) version of the Edmiston-
Ruedenberg localization method (54).

Figure 1 illustrates for four molecular wavefunctions that split-localized
MOs generate CI expansions whose configurational convergence is markedly
faster than that of the CI expansions generated by natural orbitals. Plotted are the
truncation errors due to CI truncations versus the number of determinants in the
truncated CI expansions.

2.3. Truncation of a known CI expansion
Ordering of Configurations

The first step in our truncation procedure is the ordering of the determinants
according to the importance of their contribution to the CI expansion. The

second step will be the deletion of all determinants after a certain truncation
determinant. As mentioned above, a CI wavefunction can be arranged in terms

of increasing levels of excitation relative to the reference determinant IQO).

|¥)=c,|®)+ D ¢ |<D:>+ PG (I)"’,,> DI |<D"‘"k) +.. (2.0)

where, e.g., |<D> represents the determinant formed by replacing the SCF spin-

orbital ¢, by the virtual spin-orbital ¢,. A configurational selection based on the
magnitudes of the c-coefficients, with appropriate complementation to generate
eigenvalues of S? typically yields an effective ordering according to energy
contributions.
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Figure 1. Rate of convergence of SDTQ-CI truncated expansions for FORS 1
and FORS?2 active spaces for HNO and NCCN molecules: (a) Open-circles
correspond to CI configurations generated from SD-CI natural orbitals;
(b) Filled-circles correspond to CI configurations generated from the
corresponding split-localized MO's.
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Alternatively, one can focus on the spatial part of the molecular orbitals and
introduce the weight of a product of space orbitals, given that all of its spin-
couplings are included in the expansion. Thus, for a given space product one can
define its space-product-weight as

N,

Cy = Zc;, 2.2)

K

where the sum runs over all Ngp distinct determinants differing from each other
only by spin-couplings. The truncation can then be based on this ordering of the
space functions and such truncated Cl-expansions will automatically be
eigenfunctions of S%. The compactness of the truncated expansion can be
enhanced by dividing the weight of Eq. (2.2) by the total number of
determinants corresponding to the given space-product, viz

— N\f
Ca=Yc2/N,- 23)
K

which we shall call the “importance” of the space product. We have found the
ordering of the space products according to the magnitudes of the 6;,, to yield a

slightly faster convergence of the truncated CI expansions than the ordering
based on the magnitude of the largest determinantal coefficient corresponding to
each selected SP.

An important result, found for the SDTQ[N/N] wavefunctions of all
molecules considered, is that the split-localized molecular orbitals yield a
considerably faster convergence for truncated expansions than the natural
orbitals. For example, for NCCN SDTQ[18/18], millihartree accuracy is
achieved by about 50,000 determinants of the ordering based on split-localized
orbitals whereas about 150,000 determinants are needed for the natural-orbital-
based ordering. This observation calls for the revision of a widely held bias in
favor of natural orbitals.

Truncation Criterion

In order to usefully deal with truncations, a simple criterion is needed for
assessing the energy error introduced by a truncation. In this context the concept
of the normalization deficiency has proven to be effective. This quantity is
defined as the difference between the sum of squares of the coefficients of the
Nror determinants in the untruncated wavefunction expansion and the
corresponding sum that includes only the Nri determinants selected by the
truncation:

N,
]

Nror
Ac*(Np)=>. ¢ —2cj : (2.4)
k
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If all determinants of the given wavefunction are considered then the first term
in equation (2.4) is of course unity. If one considers however only determinants
corresponding to a given (say, quadruple) substitution level taken from a SDTQ-
CI wavefunction, that will not be so. In such a case the relative normalization
deficiency (RND) is convenient:

Nroy
RND (N, )=Ac* (N,,)/ Y. e}, @.5)
k

The normalization deficiency turns out to be useful for the extrapolation of
truncated energies because it is found to be near-proportional to the energy error
introduced by the truncations considered here.

2.4. Truncation based on a priori configuration selection

Usually, SD-CI wavefunctions recover about 90-95% of the correlation
energy, inclusion of triply and quadruply substituted configurations is adequate
for many purposes, and inclusion of quintuply and sextuply excited
configurations is sufficient for describing most chemical reactions. Since the
explosion of the number of configurations typically starts with the quadruple
excitations, our first priority is the predictive deletion of deadwood from this
group.

Let us therefore assume that a preliminary full SDT[N/M]-CI calculation is
made. We then examine the triply excited configurations, order them by space

products according to the magnitudes of the (,_‘; given by equation (2.3), and

truncate them such that the resulting energy error is not larger than ~0.1 mh.
Next, the a-priori truncation of the quadruply excited configurations is
accomplished using again the tools described in the preceding section, except
that the unknown exact CI coefficients are replaced by estimated Cl coefficients.
In the spirit of coupled-cluster theory, these estimates are obtained by
approximating the coefficients of the quadruply excited terms by products of
coefficients of doubly excited terms in the prior SDT calculation. Specifically,
we have found that the weights as defined by Eq. (2.2) for the quadruply
substituted space products can be effectively estimated by the following simple
expressions

C@))=(ct) =3 (@)y(c'y o

ALL-COMBINATIONS

where the sum goes over all M products of double orbital excitations that will
result in the same quadruple orbital excitation and the quantities in brackets on
the RHS are obtained by application of Eq. (2.3) to the doubly excited space
products in the prior SDT wavefunction.
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The first step is to estimate the importance, in the sense of Eq. (2.3), of each
quadruply excited space product in the quadruples sum of Eq. (2.1). In
accordance with Eq. (2.6), we estimate it as

M
@y=2 > (@), @
M ALL-COMBINATIONS
and order the quadruply substituted orbital products in accordance with these
importance measures.

Next, SDTQ-CI calculations are performed for a few truncated quadruple
expansions with quadruple truncation degrees in the expected range (around
10% of all quadruple space products). Furthermore, using our estimation
formula (2.6), the quadruple normalization deficiencies of these wavefunctions
relative to the full SDTQ wavefunction are readily estimated as

86 (V) = 2, C(Qur) 2.C(0ur) @9

Considering now the calculated energies of the truncated expansions as
functions of the estimated normalization deficiencies, one finds that, in all cases,
the energies approach the full-SDTQ value for the limit Ac?(Ntg)—0 from above
along a linear or weakly quadratic curve. By means of an extrapolation of this
curve one can then determine the degree of truncation necessary for the error not
to exceed the desired threshold, say 1 mh, without having to calculate a CI
wavefunctions larger than the truncated one.

The effectiveness of the method is exhibited by Figure 2 in which the
energy errors of truncated expansions are plotted versus the numbers of
determinants in these expansions. For each of the four systems shown, one curve
displays this relationship for the expansions generated by the just discussed a
priori truncations, whereas the other curve is obtained a posteriori by starting
with the full SDTQ calculation in the same orbital basis and, then, simply
truncating the determinantal expansion based on the ordering established by the
exact coefficients of the determinants. There is practically no difference in the
number of determinants needed to achieve an accuracy of 1 mh.

Since the triply and quadruply excited configurations are truncated
separately, it is usually possible to shorten the CI expansion somewhat further, if
this should be desirable, by applying the procedure described in Section 2.3 to
the total calculated truncated SDTQ-CI wavefunction obtained as described in
this section. Thus, for the SDTQ[ 18/18] wavefunction of NCCN, an accuracy of
1 mh is achieved with 49,033 determinants by the estimation method, and with
43,038 determinants by the just mentioned additional improvement, reducing the
truncation from 6.32% to 5.54% of the 776,316 determinants of the full SDTQ-
CI expansion.
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Figure 2. Rate of convergence of truncated SDTQ-CI expansions based on a
priori and a posteriori ordering and error assessment. Filled circles:
Truncations based on anticipated a priori estimates. Open circles: Truncations
determined a posteriori from the full wavefunctions.
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2.5. Orbital optimization of the truncated SDTQ-CI expansions

The final step is the orbital optimization for the truncated SDTQ-CI
expansion. We used the Jacobi-rotation-based MCSCF method of Ivanic and
Ruedenberg (55) for that purpose. Table 1 contains the results for the FORS 1
and FORS2 wavefunctions of HNO and NCCN, obtained using cc-pVTZ basis
sets (57). In all cases, the configurations were based on split-localized orbitals.
For each case, four energies are listed corresponding to (i) whether the full or
the truncated SDTQ-CI expansion was used and (ii) whether the split-localized
orbitals were those deduced from the SD naturals orbitals or were eventually
MCSCEF optimized. It is seen that

(i) The energy gain by orbital optimization is the same for the full and the
truncated expansions.

(ii) Orbital optimization leads to a slight decrease in the truncation error.

(iii) Less than 10% of the full SDTQ-CI expansion is needed to achieve
chemical accuracy except for HNO [12/9] where 25% are needed.

3. Dynamic Correlation Energy Estimate and Analysis Based on Localized
Orbitals

We now turn to the problem of simplifying the recovery of the dynamic
correlation energy. We consider the simplest situation, viz., where the zeroth-
order wavefunction can be chosen as the SCF approximation. A challenging
disparity exists between the energetic smallness of these refinements and the
complexity and magnitude of the computational efforts required for their
variational determination. In order to reduce this disproportion, various
semiempirical approaches have been proposed (56-67), notably in particular the
introduction of semiempirical elements into MP2 theory which has led to the
successful Gn methods (62-64).

We have explored whether, on the basis of sound theoretical and physical
reasoning, a semiempirical formula can be derived that would directly provide
an accurate estimate of the dynamic correlation energy as a whole. Two known
rigorous results are suggestive in this context: (i) The dynamic correlation
energy can be expressed as the expectation value of a perturbing correlation
operator (65-67) and (ii) the correlation energy is known to be expressible (/0)
as sum of contributions of occupied orbital pairs, viz.

Ec=), €&, whee g =) c* (tbo

where @, is the SCF determinant and the c.,"’ are the CI coefficients of the
double excitations <bu"’ in the actual wavefunctions as in Eq. (2.1).

Ho*,) 61
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Table 1. Energies of full and truncated SDTQ-CI FORS-1 and FORS-2
calculations with and without MCSCF orbital optimization for the
molecules HNO and NCCN (values in Hartrees unless noted otherwise).

SD-NO MCSCF Energy lowering

Molecule/Model  No of Dets o Due to MCSCF
Based on  Optimized
(mh)
FORS-1: SDTOQJN/Ny]
HNO [12/9]
SDTQ-FULL 2,428  -129.96819 -129.97152 3.33
SDTQ-TRUNC. 643  -129.967711 -129.97105 3.94
Trunc. Error (mh): +1.08 +0.47
NCCN [18/16]
SDTQ-FULL 264,788  -184.92838 -184.93753 9.15
SDTQ-TRUNC. 25,776  -184.92725 -184.93663 9.38
Trunc. Error (mh): +1.13 +0.93
FORS2: SDTOQ[N/N]
HNO [12/12]
SDTQ-FULL 50,254  -130.04370 -130.04855 4.85
SDTQ-TRUNC. 5,905 -130.04276 -130.04774 4.98
Trunc. Error (mh): +0.94 +0.81
NCCN [18/18]
SDTQ-FULL 776,316  -184.96822 -184.97746 9.24
SDTQ-TRUNC. 49,033  -184.96709 -184.97650 9.41
Trunc. Error (mh): +1.13 +0.94

By postulating the correlation operator to be a sum of two-electron
operators and assuming the occupied orbitals to be localized, we were able to
show that the correlation energy can in fact be approximately expressed in terms
of the bilinear expression

E.=) PE +> 2PE, (3.2)

where the P, are electron pair populations and the E, are correlation
contributions per electron pair for the localized orbitals ¢, and orbital pairs ¢,, ¢,
respectively. For SCF wavefunctions, one has P, = 1 and P, =4 when izj.
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We have then found that the values of the intra- and inter-orbital energy
contributions can be empirically determined in such a way that, for about 50
molecules with Ec ranging from 26 to about 650 kcal/mol, the total ab-initio
valence correlation energies are reproduced within near-chemical accuracy of
the theoretically calculated values. For one set of molecules, the ab-initio values
had been obtained by valence CCSD(T) calculations in a cc-pVTZ basis (57);
for another set, they were obtained by extrapolation to the complete basis (68).

In fact, this close fit could be achieved with the following additional
simplifying assumptions: The intra-orbital correlation energy contributions are
the same for all lone pairs on all atoms and so are those for all bond orbitals. The
inter-orbital pairs are divided in the following five categories:

Type LL: Both localized MOs are lone-pair orbitals on the same atom.

Type LB One localized MO is a lone-pair orbital, the other is a bond
orbital going from the same atom to some other atom.

Type BBI: Both localized orbitals are bond orbitals originating from the
same atom but bonding this atom to two different atoms.

Type BB2: Both localized orbitals are bonding orbitals between the same
two atoms, i.e. they correspond to two different bonds in a
multiple bond.

Type VV Any two localized MOs that are separated by only one other
localized MO (“vicinal” localized MOs).

For all orbital pairs within one group, regardless of the molecule and the atom,
the interorbital energy contributions are then taken to have the same value.
Thereby Eq. (3.2) further simplifies to

Ec=E_N_ +EgNg +4E;; Ny +4E 5 Ny + 4Epg) Nag; + 4Eppz Npgz + 4Evy Nvy
(3.3)
where N, N, Ni., N, . . . denote the number of orbitals or orbital pairs of the
various types in the molecule under consideration.
The seven group correlation contributions E; , Eg, Ei, Eis, . . . were then
determined by a least-mean-squares fit of Ec to the ab initio valence correlation

energies of the afore-mentioned sets of molecules. They were found to have the
following values (38):

Energies in mh E| EB ELL ELB Egaz EBBI Evv
cc-pVTZ set of 48 mol’s 29.5 35.05 639 6.67 632 349 0.04
CBS-limit setof 18 mol’s  33.0 41.68 849 6.75 6.12 3.10 0.09
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It may be noted that, due to the pair-population factor 4 between doubly
occupied orbitals, the total correlation contribution from a pair of neighboring
orbitals is about of the same order of magnitude as the intra-orbital correlation
contributions. On the other hand, the smallness of the vicinal contributions (in
spite of typically having a large weight Nvv in the LMSQ fitting!) justifies the
neglect of contributions from orbital pairs that are separated by two or more
other localized orbitals. The exhibited distance dependence of the listed orbital
interactions is consistent with the findings of other researchers for conceptually
related quantities (/6,69,70). Even the numerical values of the individual energy
contributions are in rough agreement with the values found by the quite different
ab-initio assessment of such interactions by Stoll (70).

The operation of Eq. (3.3) is illustrated by the results given in Table 2 out of
48 molecules of the cc-pVTZ set. They are listed in order of increasing
correlation energy. The first column of the table lists the molecule. The next 6
columns show how many orbitals and orbital pairs of the various types are in
each molecule, i.e. the numbers N, Ng, N1, Nig . . . etc. The seventh column
lists the CCSD(T)/triple-zeta correlation energy and the eight column lists the
difference between the latter and the prediction by Eq. (3.3). The mean absolute
deviation over the entire set of cc-pVTZ data set is 3.14 kcal/mol. For the 18
molecules of the CBS-limit data set it is found to be 1.57 kcal/mol. The
maximum absolute deviations for the two data sets are 11.29 kcal/mol and 4.64
kcal/mol, respectively. Since the errors do not increase with the size of the
molecule, the errors in the estimates of the individual contributions must
fluctuate randomly within any one molecule, i. e. there does not seem to exist a
systematic error. The relative accuracy of the predictions increases thus with the
size of the system. It should be kept in mind that CCSD(T) results can in fact
deviate from full CI results by amounts comparable to the mean absolute
deviation associated with Eq. (3.3).

As a further test, we have also used the CBS-limit formula (3.3) to predict
the correlation energy of diamond (per carbon atom). We found the value of 164
mh while the “experimental value” is quoted as 174 mh (38). The only other
previous predictions based on more elaborate theories have yielded the values
161 mh (70), 162 mh (7/) and 150 mh (72).

Eq. (3.3) represents the correlation energy with respect to the SCF
determinant, and if non-dynamic correlation were negligible all the total
correlation energy would be dynamic and could be so calculated. In reality
various systems possess however different amounts of non-dynamic correlation
energy. This fact could be a source of error in the fittings that produced the
numerical values in Eq. (3.3). Another source of error could be the differences in
molecular environment for various types of atoms. Thus, better results might be
achieved if the non-dynamic part of correlation energy is determined by an
MCSCEF calculation, and the remaining dynamic correlation energy is estimated
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Table 2. Numbers of orbitals and orbital-pairs and comparison of valence correlation
energies (mh) estimated by Eq. (3.3) with CCSD(T) values from reference (57) for selected

8II

systems.

System Number of orbitals and orbital pairs respectively Correlation energy

L B LL BL BB2 BB1 CCSD(T) Error?
H, 0 1 0 0 0 0 39.4 52
CH,4 0 4 0 0 0 6 2246 0.9
NH;3 1 3 0 3 0 3 255.3 -1.0
HOH 2 2 1 4 0 1 275.5 04
FH 3 1 3 3 0 0 280.3 0.1
HC=CH 0 5 0 0 3 6 338.2 34
H,C=CH, 0 6 0 0 1 10 375.5 03
N= 2 3 0 6 3 0 390.4 9.6
H,C=NH 1 5 0 3 1 7 404.0 4.4
H;C-CH;,3 0 7 0 0 0 12 416.3 25
H,C=0 2 4 1 4 1 5 4229 4.4
H;C-NH, 1 6 0 3 0 9 443.6 -2.8
H;C-OH 2 5 1 4 0 7 461.7 3.5
H-N=0 3 3 1 7 1 2 462.7 2.8
H;C-F 3 4 3 3 0 6 463.8 6.5
H,N-NH, 2 5 0 6 0 6 473.5 -5.5
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H,C=C=CH, 0 8 0 0 2 14 5284 04
(CsHa)oye 0 8 0 0 1 16 533.4 1.1
(C3Hé)cye 0 9 0 0 0 18 569.5  -0.7
H,C=C=0 2 6 1 4 2 9 5739 56
F-C=CH 3 5 3 3 3 6 5817 03
(C2NHs).ye 1 8 0 3 0 15 599.1 3.7
(N2CHy)eye 2 6 0 6 1 10 600.4 2.9
H;C-CH,~CH; 0 10 0 0 0 18 606.3 25
F-C=N 4 4 3 6 3 3 6122  -18
0=C=0 4 4 2 8 2 4 619.8 -11.1
HC=C-C=CH 0 9 0 0 6 12 643.9 7.9
H,C=C=C=CH, 0 10 0 0 3 18 684.1 3.9
N=C-C=N 2 7 0 6 6 6 704.5 33
(CiHe)eye 0 11 0 0 1 22 724.6 22
F-NH-F 7 3 6 9 0 3 751.9 24
(CNHs)eye 1 12 0 3 2 23 909.2 2.0
(C4OH.)cye 2 11 1 4 2 21 928.4 2.4
(N2C,0Hy)cye 4 9 1 10 2 15 9893  -1.9
(Cete)eye 0 15 0 0 3 30 10249  -19

2 Error = Eoq[CCSD(T)] - Eoo[model].

611
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by an expression analogous to Eq. (3.2). Indeed, it has been recently reported
(73) that additivity rules for nondynamic and dynamic correlation energy can be
successfully used in planar chain heteroatomic polyenes.

The set of molecules for which the relationship of Eq. (3.3) has been tested
with the reported accuracy, has certain simplifying features in common: They all
have standard bonding coordinations around each atom and the shortfall of the
SCF energy is entirely due to dynamic correlations. Modifications are to be
expected for systems where these premises are not satisfied. Even with these
limitations, however, the molecules in Table 2 represent a variety of atom and
bond combinations. It is therefore remarkable that, for all of them, the
correlation energy can be recovered by a simple system-independent formula
that allows for a physically meaningful interpretation.

Theoretical derivations and detailed discussions of further aspects of this
approach are given elsewhere (38).

4. Conclusions

A two-pronged approach has been discussed for dealing with electron
correlation in large systems: (i) An extension of zeroth-order full-valence type
MCSCEF calculations to larger systems by radical a priori truncations of SDTQ-
CI expansions based on split-localized orbitals in the valence space and (ii) the
recovery of the remaining dynamic correlation by means of a theoretically-based
simple semi-empirical formula.

The truncation procedure for full-valence-space and N-electrons-in-N-
orbitals SDTQ MCSCF wavefunctions is based on choosing “split-localized”
molecular orbitals as configuration generators since they lead to the greatest
number of “deadwood configurations” that can be deleted. A quite accurate
estimation method of identifying the latter has been developed so that the
truncation can be performed a priori. The method has been shown to be effective
in applications to the molecules HNO, OCO and NCCN where, for instance, the
energies of the full SDTQ[N/N] calculations are recovered to better than 1 mh
by truncated expansions that require only 11.8%, 10.9% and 6.3%, respectively,
of the number of determinants in the full calculations. Similar trends are
observed for the FORS 1 model.

A close estimate of the dynamic correlation energy was obtained by a
simple formula in terms of pair populations and correlation contributions within
and between localized molecular orbitals. The orbital and orbital-pair correlation
strengths rapidly decrease with the distance between the orbitals in a pair. For
instance, the total valence correlation energy of diamond per carbon atom,
estimated as 164 mb, is the result of 84 mh from intra-orbital contributions, 74.5
mh from inter-orbital “closest neighbors” contributions, and 6.1 mh from inter-
orbital vicinal contributions. The rapid decay of the orbital correlation
contributions with the distance between the localized orbitals explains the near-
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linear scaling of the total correlation energy with the number of electrons, a
feature that had been observed quite early (74,75).

The present approach will be generalized in two respects. On the one hand,
the a priori truncation method will be extended to quintuply and sextuply excited
configurations. On the other hand, the truncation method as well as the dynamic
correlation estimate will be extended to systems where the number of strongly
occupied orbitals exceeds the number of SCF orbitals, entailing zeroth-order
wavefunctions that are dominated by several determinants. It will then be
possible to combine the two approaches.

Acknowledgements

The authors wish to thank Dr. M.W. Schmidt for his help with the
GAMESS program. The present work was supported by the Division of
Chemical Sciences, Office of Basic Energy Sciences, U.S. Department of
Energy under Contract No. W-7405-Eng-82 with Iowa State University through
the Ames Laboratory.

References

1. Klopper, W.; Bak, K. L.; Jorgensen, P.; Olsen, J.; Helgaker, T.; J. Phys. B:
At. Mol. Opt. Phys., 1999, 32, R103.

2. Sherrill, C. D.; Schaefer III, H. F.; The Configuration Interaction Method:

Advances in Highly Correlated Approaches. Adv. Quant. Chem., 1999,

vol. 34, p. 143.

Pauling, L.; Wheland, G. W.; J. Chem. Phys., 1933, 1, 362.

Klein, D. J.; Bytautas, L.; J. Phys. Chem. A, 1999, 103, 5196.

Ivanciuc, O.; Bytautas, L.; Klein, D. J.; J. Chem. Phys., 2002, 116, 4735.

Kohn, W.; Rev. Mod. Phys., 1999, 71, 1253.

Parr, R. G. and Yang, W.; Density-Functional Theory of Atoms and

Molecules, Oxford University Press, 1989.

D. Cremer; Mol. Phys., 2001, 99, 1899.

Jones, R. O.; Gunnarsson O.; Rev. Mod. Phys., 1989, 61, 689.

0. Szabo, A.; Ostlund, N. S.; Modern Quantum Chemistry. Introduction to

Advanced Electronic Structure Theory, McGraw-Hill, Inc. 1989.

11. Ayala, P. Y.; Kudin, K. N.; Scuseria, G. E., J. Chem. Phys., 2001, 115,
9698.

12. Davidson, E. R.; Configuration Interaction description of electron
correlation, in The World of Quantum Chemistry, ed. Daudel, R. and
Pullman, B.; D. Reidel, Dordrecht; 1974.

13. Shavitt, I.; Mol. Phys., 1998, 94, 3.

14. Head-Gordon, M.; J. Phys. Chem., 1996, 100, 13213.

15. Pulay, P.; Chem. Phys. Lett., 1983, 100, 157.

Nowaw

= 0 ®

In Electron Correlation Methodology; Wilson, A., el al.;
ACS Symposium Series; American Chemical Society: Washington, DC, 2007.



Downloaded by TECHNISCHE UNIV MUENCHEN on October 23, 2009 | http://pubs.acs.org

Publication Date: March 13, 2007 | doi: 10.1021/bk-2007-0958.ch007

122

16.
16.
17.
18.

19.
20.
21.
22,
23.

24,
25.
26.
27.
28.
29.
30.

3L

32.
33.
34.
35.
36.
37.
38.
39.

Saebe, S.; Pulay, P.; Annu. Rev. Phys. Chem., 1993, 44, 213.

Hampel, C.; Wemer, H.-J.; J. Chem. Phys., 1996, 104, 6286.

Schiitz, M.; Hetzer, G.; Werner, H.-J.; J. Chem. Phys., 1999, 111, 5691.
Reynolds, G.; Martinez, T. J.; Carter, E. A.; J Chem Phys., 1996, 105,
6455.

Walter, D.; Carter, E. A.; Chem. Phys. Lett., 2001, 346, 177.

Buenker, R. J.; Peyerimhoff, S.; Theor. Chim. Acta, 1968, 12, 183.
Buenker, R. J.; Peyerimhof¥, S.; Theor. Chim. Acta, 1974, 35, 33.

Buenker, R. I.; Peyerimhoff, S.; Theor. Chim. Acta, 1975, 39, 217.

Friesner, R. A.; Murphy, R. B.; Beachy, M. D.; Ringnalda, M. N.; Pollard,
W. T.; Dunietz, B. D.; Cao, Y.; J. Phys. Chem. A, 1999, 103, 1913.

Dunietz, B. D.; Friesner, R. A.; J. Chem. Phys., 2001, 115, 11052.
Gershgorn, Z.; Shavitt, I.; Int. J. Quant. Chem., 1968, 2, 751.

Huron, B.; Malrieu, J. P.; Rancurel, P.; J. Chem. Phys., 1973, 58, 5745.
Cave, R. J.; Xantheas, S. S.; Feller, D.; Theor. Chim. Acta, 1992, 83, 31.
Harrison, R. J.; J. Chem. Phys., 1991, 94, 5021.

Hanrath, M.; Engels, B.; Chem. Phys., 1997, 225, 197.

Palmieri, P.; Tarroni, R.; Mitrushenkov, A. O.; Rettrup, S.; J. Chem. Phys.,
1998, /09, 7085.

Maynau, D.; Evangelisti, S.; Guihéry, N.; Calzado, C. J.; Malrieu, J. P.; J.
Chem. Phys., 2002, 116, 10060.

Davidson, E. R.; Silver, D. W.; Chem. Phys. Lett., 1977, 52, 403.

Sherrill, C. D.; Schaefer I11, H. F.; J. Phys. Chem., 1996, 100, 6069.
Bytautas, L.; Ivanic, J.; Ruedenberg, K.; J. Chem. Phys, (to be submitted).
Ivanic, J.; Ruedenberg, K.; Theor. Chem. Acc, 2001, 106, 339.

Ivanic, J.; Ruedenberg, K.; Theor. Chem. Acc., 2002, 107, 220.

Bytautas, L.; Ruedenberg, K.; Mol. Phys., 2002, 100, 757.

Pulay, P.; Hamilton, T. P.; J. Chem. Phys., 1988, 88, 4926.

Gordon, M. S.; Schmidt, M. W.; Chaban, G. M.; Glaesemann, K. R,;

- Stevens, W. J.; Gonzalez, C.; Chem. Phys., 1999, 110, 4199.

40.
41.
42,
43.
44,
45.
46.

47.
48.

Schmidt, M. W.; Gordon, M. S.; Ann. Rev. Phys. Chem, 1998, 49, 233.
Roos, B. O.; Adv. Chem. Phys., 1987, 69, 399.

Andersson, K.; Malmgqvist, P.-A.; Roos, B. O.; J. Chem. Phys.; 1992, 96,
1218.

Ruedenberg, K.; Schmidt, M. W.; Gilbert, M. M.; Elbert, S. T.; Chem.
Phys., 1982, 71, 41.

Ruedenberg, K.; Schmidt, M. W_; Gilbert, M. M.; Chem. Phys., 1982, 71,
51.

Ruedenberg, K.; Schmidt, M. W.; Gilbert, M. M.; Elbert, S. T.; Chem.
Phys., 1982, 71, 65.

Lam, B.; Schmidt, M. W.; Ruedenberg, K.; J. Phys. Chem., 1985, 89, 2221,
Foster, J. M.; Boys, S. F.; Rev. Mod. Phys, 1960, 32, 300.

Hurley, A. C.; Lennard-Jones, J.; Pople, J. A.; Proc. R Soc. London, Ser. A,
1953, 220, 446.

In Electron Correlation Methodology; Wilson, A., el al.;
ACS Symposium Series; American Chemical Society: Washington, DC, 2007.



Publication Date: March 13, 2007 | doi: 10.1021/bk-2007-0958.ch007

Downloaded by TECHNISCHE UNIV MUENCHEN on October 23, 2009 | http://pubs.acs.org

49.
50.
5L

52.

53.
54.
55.
56.
57.
58.
59.
60.
61.

62.

63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.

123

Goddard, W. A.; Harding, L. B.; Annu. Rev. Phys. Chem., 1978, 29, 363.
Dunning Jr., T. H.; J. Chem. Phys., 1989, 90, 1007.

Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M.
S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A,; Su, S. J;
Windus, T. L.; Montgomery, J. A.; J. Comp. Chem., 1993, 14, 1347.
Raffenetti, R. C.; Ruedenberg, K.; Janssen, C. L.; Schaefer, H. F.; Theor.
Chim. Acta, 1993, 86, 149.

Edmiston, C.; Ruedenberg, K.; Rev. Mod. Phys., 1963, 35, 457.

Ivanic, J.; Ruedenberg, K.; J. Comp. Chem., (accepted).

Cremer, D.; J. Comp. Chem., 1982, 3, 165.

Rosciszewski, K.; Int. J. Quant. Chem., 1996, 58, 471.

Martin, J. M. L.; J. Chem. Phys., 1992, 97, 5012.

Martin, J. M. L.; J. Chem. Phys., 1994, 100, 8186.

Maksié, Z. B.; Bari¢, D.; Petanjek, 1.; J. Phys. Chem. A, 2000, 104, 10873.
Maksié, Z. B.; Smith, D. M.; Bari¢, D.; Chem. Phys., 2001, 269, 11.

Pople, J. A.; Head-Gordon, M.; Fox, D. J.; Raghavachari, K.; Curtiss, L. A.;
J. Chem. Phys., 1989, 90, 5622.

Curtiss, L.A.; Ragavachari, K.; Trucks, G.W.; Pople, J.A.; J. Chem. Phys.,
1991, 94, 7221.

Pople, J. A., Rev. Mod. Phys., 1999, 71, 1267.

Essén, H., Int. J. Quant. Chem., 1986, 30, 89.

Roos, B. O.; Szulkin, M.; Jaszunski, M.; Theor. Chim. Acta, 1987, 71, 375.
Savin, A.; Flad, H.-J.; Int. J. Quant. Chem., 1995, 56, 327.

Feller, D.; Peterson, K. A.; J. Chem. Phys., 1998, 108, 154.

Ayala, P. Y.; Scuseria, G. E.; Chem. Phys. Lett., 2000, 322, 213.

Stoll, H.; Phys. Rev. B, 1992, 46, 6700.

Stollhoff, G.; Bohnen, K. P.; Phys. Rev. B., 1988, 37, 4678.

Fahy, S.; Wang, X. W.; Louie, S. G.; Phys. Rev. B, 1990, 42, 3503.

Smith D. M.; Bari¢ D.; Maksi¢, Z. B.; J. Chem. Phys., 2001, 115, 3474.
Clementi, E.; J. Chem. Phys., 1963, 38, 2248.

Clementi, E.; J. Chem. Phys., 1963, 39, 175.

In Electron Correlation Methodology; Wilson, A., el al.;
ACS Symposium Series; American Chemical Society: Washington, DC, 2007.



Chapter 8

Correlation Consistent Basis Sets with Relativistic
Effective Core Potentials: The Transition Metal
Elements Y and Hg

Kirk A. Peterson
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Gaussian basis sets for the elements Y and Hg appropriate for
valence electron correlation have been developed using a
correlation consistent prescription with accurate relativistic
effective core potentials. The resulting sequences of basis sets
are denoted cc-pVnZ-PP (correlation consistent polarized
relativistic valence n-{) and range in size from n = D-5. In
each case systematic convergence towards the complete basis
set limit is clearly observed for both the Hartree-Fock and
correlation energies. In the case of Hg, all-electron basis sets
are also reported both with and without the inclusion of scalar
relativity via the Douglas-Kroll-Hess Hamiltonian. The
accuracy of the resulting basis sets is demonstrated in
benchmark calculations on YC, HgH’, and Hg,. Predictions
are made for r, and D, for YC and D, for HgH". In all three
cases, the results appear to be the most accurate to date and
agree very well with experiment.
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Introduction

One of the major advances in the ab initio calculation of molecular
electronic structure over the last 15 years has been the development of Gaussian
basis sets that exhibit systematic convergence towards the apparent complete
basis set (CBS) limit. Motivated in part by the atomic natural orbital basis sets
of Almlsf and Taylor (), Dunning introduced the idea of correlation consistent
basis sets for the first row atoms (2). In this scheme a set of spdfg... correlation
functions were included with a sp primitive Hartree-Fock (HF) set based on the
criteria that each function should contribute nearly equal amounts of incremental
correlation energy in configuration interaction (CI) calculations on the atoms.
For the first row atoms this resulted, for example, in the smallest basis set
including just one d-type polarization function, while the next set in the series
included both 2 d-type functions as well as 1 f-type correlation function. In the
latter case the 2nd d-type function and 1st f~type function each contributed very
similar amounts of correlation energy to the total energy of the atom in CI
calculations and about an order of magnitude less than the first d-type function.
The resulting family of basis sets, denoted cc-pVnZ with n =D, T, Q, 5 (and
sometimes 6), resulted in very regular convergence of the total energies of atoms
and molecules towards their CBS limits. Numerous subsequent studies have
investigated how best to exploit this regular convergence for the accurate
calculation of thermochemistry and spectroscopic properties of molecules.
Determination of the CBS limit also facilitates the estimation of the errors
intrinsic to the correlation method chosen to describe the many electron wave
function. Over the last several years, Dunning and co-workers have extended
these basis sets to include the 2nd row atoms Al — Ar (3) and the 3rd row main
group atoms Ga — Kr (4). Extensions of these sets for describing anions (5) and
weakly bound systems (6), as well as the description of core electron correlation
effects (7,8), have also been reported.

By their construction, the correlation consistent basis sets are all-electron
sets, i.e., all of the electrons in each atom are explicitly described by basis
functions. In many respects this is advantageous, but this approach can also lead
to very large basis sets for heavier elements in order to adequately describe the
low-lying core electrons. In addition, both scalar and spin-orbit relativistic
effects must also be treated using all-electron methods, which can lead to
relatively high computational costs. On the other hand, a nearly effortless way
to accurately recover relativistic effects involves the use of relativistic effective
core potentials (ECPs) or pseuodopotentials (PPs). In addition to yielding
accurate scalar and spin-orbit relativistic effects, the resulting basis sets can be
much smaller due to the absence of the core electrons. While PPs are generally
accompanied by their own basis sets, these are generally of only double- or
triple-zeta quality and do not allow for a systematic expansion towards the CBS
limit like the all-electron correlation consistent basis sets. Recently there have
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been a few studies involving correlation consistent-like basis sets developed in
conjunction with relativistic PPs. Bauschlicher (9) has developed sequences of
basis sets for use with both large- and small-core PPs of the Stuttgart variety for
the In atom and reported their use in thermochemical studies (/0). More
recently Martin and Sundemann (//) developed a series of basis sets with
correlation consistent polarization functions for Ga — Kr and In — Xe that
utilized large-core Stuttgart-Dresden-Bonn PPs (with some small-core studies
also for In). Their SDB-cc-pVnZ (n=T, Q) basis sets were then used in several
small molecule benchmark calculations. Lastly, Schwerdtfeger and co-workers
(12,13) have reported a series of cc-like basis sets for Hg that use the same
accurate small-core PP as in the present work. Their basis sets were derived
from a single HF set and all exponents were optimized at the MP2 level of
theory.

In the present work, correlation consistent basis sets have been developed
for the transition metal atoms Y and Hg using small-core quasirelativistic PPs,
i.e., the ns and (n-1)d valence electrons as well as the outer-core (n-1)sp
electrons are explicitly included in the calculations. This can greatly reduce the
errors due to the PP approximation, and in particular the pseudo-orbitals in the
valence region retain some nodal structure. Series of basis sets from double-
through quintuple-zeta have been developed and are denoted as cc-pVnZ-PP
(correlation consistent polarized valence n-{ with pseudopotentials). The
methodology used in this work is described in Sec. II, while molecular
benchmark calculations on YC, HgH", and Hg, are given in Sec. III. Lastly, the
results are summarized in Sec. IV.

Methodology

The development of correlation consistent basis sets can generally be
divided into 3 - 4 steps:

* Optimization of a series of correlation functions for the total correlated
energy of the atom using a large HF base set — this establishes the
identity and quantity of angular momentum functions that will be
included in each correlation consistent basis set.

* Optimization of a series of spd HF sets that systematically converge to
the HF limit.

* Determination of how to best include correlating functions for angular
momenta that correspond to occupied atomic orbitals, i.e., uncontract or
add additional functions.

* Optimization of augmenting functions for the description of electron
affinities, weak interactions, or core-valence correlation effects.

In Electron Correlation Methodology; Wilson, A., el al.;
ACS Symposium Series; American Chemical Society: Washington, DC, 2007.



Downloaded by TECHNISCHE UNIV MUENCHEN on October 23, 2009 | http://pubs.acs.org

Publication Date: March 13, 2007 | doi: 10.1021/bk-2007-0958.ch008

128

This procedure has recently been carried out by the present author for all of the
post-d elements Ga — Rn using accurate small-core relativistic PPs (/4,15).
Only a few modifications to the above schema was required due to the presence
of a PP (see below). On the other hand, as discussed previously by several
authors (c.f., Refs. (16-18)), the development of accurate basis sets for transition
metals must involve addressing a number of issues that do not generally exist for
main group elements. In particular, most of the transition metal elements have
several important low-lying electronic states that contribute to bonding in
molecules containing these elements, namely configurations of the type ns” (n-
Nd™?, ns(n-1)d™', and (n-1)d", where m is the number of valence electrons.
Optimization of basis functions for just one of these configurations can
introduce significant bias into the resulting exponents, especially since the ns
orbital generally has a very different radial extent than the (n-1)d orbitals. In
addition, the valence p orbitals are generally unoccupied for the atoms, but can
be important for bonding in molecular systems. Lastly, the spatial region of the
semi-core (n-1)sp shell is very similar to that of the (n-1)d shell, which can lead
to strong core-valence correlation effects. In the case of all-electron basis sets
for the 1st row transition metals, Bauschlicher and Taylor (/6), Bauschlicher
(17), and Pou-Amerigo et al. (/8) have carefully addressed these issues for
correlated calculations within the framework of atomic natural orbital basis sets.
Each of these studies was based on large spd Hartree-Fock basis sets optimized
by Partridge (/9) for the 45s?3d™ states of the atoms. Several diffuse p functions
were then added in an even tempered fashion to describe the 4p orbital, as well
as an additional diffuse d-type function. The latter of these was to primarily
account for a possible bias in the original HF d set (optimized explicitly for the
4s3d™? state) against the 4s3d™’ configuration. Correlating functions of dfg
symmetry were then added to these sets, and these were optimized for the
average of up to three electronic states of the atoms. In the work of Pou-Amigo
et al. (18), ionic states and calculations with small external electric fields applied
to the neutral atoms were also used in the averaging procedure. More recently,
these ideas have been extended by Bauschlicher (20) and Ricca and
Bauschlicher (27) to basis sets for Ti and Fe, respectively, with correlation
consistent-type polarization functions. Martin and Sundemann (//) have also
reported sets of state-averaged (2f1g) functions to be added to existing small-
core Stuttgart PP basis sets for all three rows of the transition metal elements. A
different averaging scheme has been reported by Noro et al. (22) for the first
row transition metals, whereby the exponents were optimized to produce natural
orbitals that closely reproduced large basis set results in state averaged
calculations of the 4s°3d™ and 4s3d™" states.

The present work represents a preliminary attempt to incorporate many of
these strategies in conjunction with the use of small-core relativistic effective
core potentials for obtaining compact series of correlation consistent basis sets
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for the transition metals. All of the exponent optimizations in this work were
carried out using a BFGS algorithm (23) using double-sided numerical
derivatives. The actual exponent (£) optimizations were performed in the space
of In({) and the gradient of In({) was generally converged to better than 1x10°
The MOLPRO program suite (24) was employed for all calculations and only the
pure spherical harmonic components of the dfg... angular momentum functions
were used. Unless otherwise noted, only the valence electrons (Ss and 4d for Y
and 6s and 54 for Hg) were correlated. The Hartree-Fock base sets used in
preliminary optimizations were taken from extended even tempered (ExtET)
expansions. These are defined by modifying the usual §; = a B* even tempered
formula (25,26) to ¢ = o P, where

2
f(k)=k 1+y-’£+8(£) )
n n

for k=0, 1, ..., n—1 (k = 0 corresponds to the most diffuse exponent and # is the
expansion length). The ExtET form is similar to the usual well tempered
expansion scheme and requires the optimization of four parameters (., B, v, 3).
The functional form of Eq.(1) is based on a cubic polynomial fit to the spacings
between In(¢,) within a given basis set of fully optimized exponents. By way of
contrast, the usual even tempered formula is linear in this spacing. Particularly
for fully-optimized, all-electron basis sets, this spacing is a slowly increasing
function of &, and are well fit by the ExtET form with the parameters y and &
having typical values of about —1.0 for y and +1.0 for 8. In the present work,
(14s13pl11d) ExtET sets were used as base sets in the initial optimizations of
correlation functions and fully-optimized HF spd primitive sets.

The optimization of basis functions in the presence of an ECP does present
some new issues that are explicitly addressed in the present calculations. First,
since the PP attempts to force the pseudo-orbital to zero in its inner regions,
unconstrained exponent optimizations at the HF level can lead to near linear
dependency in the basis sets, i.e., the ratio of two neighboring exponents can be
as small as 1.3 or less. This commonly occurs in existing ECP basis sets. In the
present work, the exponent optimizations are constrained so that the ratio of any
two exponents in the same angular symmetry must be > 1.6. This has a
negligible effect on the energy. In addition, as shown by both Bladeaeu and co-
workers (27) and Christiansen (28), single uncontracted correlating functions in
ECP-based calculations are much less effective than in all-electron calculations
due to the interplay of the amplitudes and derivatives of these functions near the
origin and the magnitude of the pseudo-orbitals in this region. The most
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straightforward solution to this problem is to just include an extra correlating
function in each symmetry. While as shown below only s functions are
significantly affected, additional s, p, and d functions have also been added in
the present work. Hence while a double-zeta basis set typically includes only a
1slpld correlation set, the new prescription would be to include at least a
252p2d set. Lastly, in order to minimize any large gaps between the exponents
of the most diffuse functions, especially for the smaller basis sets, the maximum
ratio between subsequent exponents among the four most diffuse exponents was
constrained to approximately equal the ratio of the first two. This constraint was
enforced for both the s and p exponents in Y and only the s exponents in Hg. In
retrospect, these latter constraints were probably unnecessary and in any event
had only a minimal effect on the final exponent distributions and especially the
total HF energies.

cc-pRVnZ basis sets for Y

The present basis sets for Y were developed using the 28 electron ECP of
Andrae et al. (29), which leaves 11 electrons in the valence shell. A total of 3
electronic states of the neutral atom were considered in the optimizations.
Specifically these corresponded to the 4d 55° @’D), 4d 55 (a’F), and 44 (b'F)
states. The Hartree-Fock calculations on these states involved separate state-
averaging of all degenerate components so that the orbitals were fully symmetry
equivalenced. Subsequent singles and doubles CI (CISD) calculations were then
carried out with these orbitals on only a single component of each state.

In order to determine the correlation consistent groupings of dfg...
correlating functions for the yttrium atom, CISD optimizations were carried out
with a (14s13pl1d) ExtET base set contracted to [6s5pld]. For these
calculations even tempered expansions were used for the correlating functions.
Figure 1 shows the incremental correlation energy recovered by the addition of
correlating functions in 3-state energy averaged CISD calculations (3 electrons
correlated). After including up to 5 even tempered d-type functions, f functions
were added to a [6s5pld]+(4d) set, g functions were subsequently added to a
[6s5p1d]+(4d 3f) set, h functions were added to a [6s5p1d]+(4d 3/2g) set, and
finally an / function was added to the [6s5p1d]+(4d 3f2g1h) set. The expected
correlation consistent groupings are clearly apparent from this plot, namely (1/)
for DZ, (2f1g) for TZ, (32glh) for QZ, and (4f3g2hl:) for SZ. In addition,
including multiple angular momentum functions of the same type is
energetically more important than adding a single function of the next higher
type. This is opposite to the trend generally observed for main group elements.
The inset to Figure 1 shows the effects of adding correlating s, p, and d
functions to [2s5pld]+(4d3/2g), [6s1pld]+(4d3/2g), and [6s5pld] base sets,
respectively. The addition of p-type correlating functions are calculated to
recover somewhat more correlation energy than even d-type functions. This
inset also clearly shows the effect of the underlying ECP on the correlation
energy recovered by the s-type functions, namely the 2nd s function yields
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Figure 1. Contributions of correlating functions, as well as s, p, and d functions
(inset), to the average CISD correlation energy of the 55°4d', 5s4d’, and 44,
states of yttrium. The absolute values of the incremental correlation energy
lowerings, | AEM,,| , are plotted in mE,, against the number of functions in the
expansions for spdfghi functions. The solid lines are exponential fits.
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essentially the same incremental correlation energy as the first. Thus the strategy
of including two s-type correlating functions at the DZ level is well justified.
Poor convergence of the p- and d-type functions is not observed, but in these
preliminary sets two, of each are also included in the cc-pVDZ-PP basis set to
remain consistent with the s correlating functions. It should also be noted at this
point that when the correlating functions are optimized only for the 4d 5s state
instead of a state-average as above, the resulting d exponents are more than 50%
larger. Much smaller differences between the two approaches is observed for the
higher angular momentum functions.

The next step in the development of a compact cc basis set series for Y is
the optlmlzatlon of spd HF sets. These optimizations were carried out for the
4d 55 state only, which is consistent with earlier treatments of the 1st row
transition metals. The s, p, and d HF functions were optimized separately and
for each series a (14s13p11d)/[2s2p1d] ExtET set was used as a base set in the
optimizations, i.e., [2pld]+ns, [2s1d])+np, and [2s2p]+nd. Figure 2 displays the
errors relative to the approximate HF limit for each series. For the ns series, the

! )
0.1
a.:
3
:§ 0.01
w
<
0.001
0
4 6 8 10 12 14

Number of Functions

Figure 2. Hartree-Fock errors relative to a (14s12p10d) base set plotted against
the number of functions, m, in (ms, 12p, I 0d), (14s,mp, 10d), and (14s, 12p,md)
expansions for the 5s° 4d state of yttrium.
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(75)-(9s) sets have double-{ exponent distributions for the S5s orbital, while
larger sets have triple-¢ distributions. In the past, the decision of which spd HF
set to use in a given cc-pVnZ basis set was based on the suitability of functions
within these sets to uncontract and use for correlating functions. In principle this
could also be carried out for the present cc-pVnZ-PP basis sets, but in the
present work the spd sets were chosen primarily on their relative errors and
convergence towards the HF limit. The cc-pVDZ-PP set should have a double-
€ distribution for the 5s orbital and hence the (7s) set was chosen. The (5p) and
(54d) sets were then chosen for the DZ set since they had similar relative errors as
shown in Figure 2. The (10s) set, which has a triple-§ distribution for the 5s
orbital and a relative error about an order of magnitude less than the (7s) set,
was used in the cc-pVTZ-PP basis set and was matched with the (7p) and (74)
sets. The cc-pVQZ-PP basis set consisted of a (12510p9d) set and the cc-pV5Z-
PP used a (145s12p10d) set.

Two further modifications were used in the final versions of the cc-pVnZPP
HF basis sets. First, two additional even tempered p functions were added to
each set in order to accurately describe the unoccupied 5p orbital. Test
optimizations were also carried out on the P state of Y and nearly identical
exponents were obtained. Thus the final sets used just the even tempered
exponents. Secondly, instead of adding an additional diffuse 4 function to better
describe the Ss44” state as has been done in previous work, the HF d functions
were re-optimized for a 3-state energy average. This had the effect of producing
more diffuse exponents without introducing significantly larger HF errors for the
5s%4d state. In all cases [2s], [1p], and [1d] contraction coefficients were taken
from calculations on the Ss’4d state, except that an additional [1p] contracted
function was taken from a calculation on the 5s’Sp state. Lastly, the f and g
correlating functions were not restricted to even tempered sequences (although
in the end the fully optimized exponents differed only marginally from their
even tempered counterparts). The final cc-pVnZ-PP basis sets were constructed
as follows:

c-pVDZ-PP: (7s7p5d)/[4s4p3d] + If
cc-pVTZ-PP: (10s9p7d)/[6s6p4d] + 2f1g
cc-pVQZ-PP: (12512p9d)/[7s7p5d] + 32glh
cc-pV5Z-PP: (14514p10d)/[8s8p6d] + 4f3g2h1i

Figure 3 shows both the HF and CISD correlation energy convergence relative
to the basis set limits for the 55’4d, 5544°, and 44" states. The HF limit is very
nearly reached at the cc-pVQZ-PP level, and the convergence of the correlation
energy is also very rapid. The CBS limits for the correlation energies were
obtained from the QZ and 5Z results via a 2-point n’ extrapolation (30,31).
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Figure 3. Basis set errors for the HF energy and CISD correlation energy with
the final cc-pVnZ-PP basis sets for the (O, B) 55°4d, (O, @) 5s4d’, and (A, A)
44 states of yttrium. The open symbols correspond to the HF results (left axis),
while the filled symbols refer to the CISD correlation energies (right axis).
Note that the correlation energy results are plotted on a log scale.

The basis sets described above are specifically designed for valence electron
correlation only, i.e., the Ss and 4d electrons. As briefly mentioned above, the
semi-core 4s and 4p orbitals of Y have radial extents that are expected to be very
similar to the valence orbitals and hence strong core-valence correlation effects
are expected. This requires a further augmentation of the cc-pVnZ-PP basis sets,
and these additional functions were obtained using the weighted core-valence
cc-pwCVnZ scheme as recently described for the 1st and 2nd row atoms (8). In
the case of main group atoms, full shells of additional correlating functions were
used, i.e., a set of [He] or [Ne] correlation consistent shells in the case of the 1st
and 2nd row atoms, respectively. For the Y atom it was found that multiple
functions of each angular momentum were relatively unimportant in recovering
core-valence correlation energy. Hence the cc-pwCVTZ-PP basis set consisted
of just the cc-pVTZ-PP set with additional 1s1pldlf core-valence correlating
functions. Note that this behavior may not be general for all of the transition
metals and warrants further investigation.
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In order to test the accuracy of the new ECP-based, cc-pVnZ-PP basis sets
for Y, all-electron cc-pVQZ basis sets were also derived. These were based on
the large (26516p13d) HF set of Partridge, which were optimized for the 5s°4d
(*D) state. This set was further augmented by 3 even tempered diffuse p
functions, as well as one diffuse 4 function that was also obtained as an even
tempered extension of the 134 set. The resulting (26519p14d) basis was then
contracted to [10s8p6d] using both nonrelativistic (NR) and DK-relativistic HF
calculations. Even tempered sets of 3/2g1A correlating functions were optimized
as in the cc-pVnZ-PP case for the energy average of 3 states using NR- and DK-
CISD calcuations. The resulting basis sets are denoted by cc-pVQZ-NR and cc-
pVQZ-DK.

cc-pVnZ-PP basis sets for Hg

The cc-pVnZ-PP basis sets for Hg were developed using the 60 electron
quasirelativistic ECP of Haiissermann et al. (32). This PP has a [Krdd'%3/*]
core and leaves 20 electrons in the valence shell, the 8 electrons in the 5s5p
orbitals and the 12 electrons in the 6s and 5d orbitals. The initial optimization of
correlating functions was carried out for the 6s° 54'° ground state with the
(12510p9d) basis set of Haiissermann et al. with the addition of 2 even tempered
p functions. Figure 4 plots the incremental correlation energy contributions of
each type of correlating function at the CISD level of theory. These quantities
were obtained in a similar manner as in Y, i.e., up to 5 even tempered f functions
were added to a [6s6p5d] base set, then up to 4 g functions were added to a
[6s6p5d4f] set, etc. The series of d functions were added to a [6s6p1d4f3g] set,
while [256p5d4f3g] and [6s2p5d4f3g] sets were used for the s and p series,
respectively. The results are qualitatively similar to Y except that the
magnitudes of the correlation energy contributions are much greater due to more
electrons being correlated in Hg compared to Y. In the case of the fghi
correlating functions, the correlation consistent groupings are again easily
observed in Figure 4, but in the case of Hg, addition of the first 4 function and
the first i function is energetically more important than the 2nd g (and 3rd /) or
2nd h (and 3rd g and 4th /) functions, respectively. In the case of the spd
functions, only the d-type correlating functions exhibit near exponential
convergence towards the CBS limit. Further investigation of the somewhat
erratic convergence for the p functions revealed that much better convergence
was achieved by removing the restriction to even tempered expansions. The
behavior of the 1st two correlating s functions is very similar to Y and can also
be attributed to the presence of the ECP.

The optimization of HF primitive sets then proceeded much like the Y case,
i.e., a (14s13p11d) ExtET base set was used in HF optimizations on the d'’ state
of Hg to generate s sets from (7s) — (14s), p sets from (4p — 12p), and d sets
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The absolute values of the incremental correlation energy lowerings, |AE .|
are plotted in mE, against the number of functions in the expansions for spdf...
Sfunctions. The solid lines are exponential fits.
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from (5d — 11d). The errors for each of these sets relative to a (14s12p11d) fully
optimized set, which is expected to be within 0.01 mE, of the Hartree-Fock
limit, are shown in Figure 5. As with Y, the choice of which HF set to use in a
given cc-pVnZ-PP basis set was determined mostly by the size of the HF error.
The other consideration was whether the most diffuse exponents followed a
smooth progression from one set to another. For Hg, a (7s5p6d) set was chosen
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Figure 5. Hartree-Fock errors relative to a (14512p10d) base set plotted against
the number of functions, m, in (ms, 12p, 10d), (14s,mp, 10d), and (14s, 12p,md)
expansions for the 5d'° state of mercury.

for the DZ basis set since these all have similar HF errors and the (7s) set has a
double-{ description of the 6s orbital. For the TZ set, a (10s7p7d) primitive set
was chosen since the (10s) set has a triple-{ description of the 6s orbital and the
(7p) and (74d) sets have comparable HF errors. For the QZ and 5Z basis sets, the
(12510p9d) and (14s12p11d) primitive sets, respectively, were decided to be
good choices. These primitives were then augmented in each case by 2 diffuse p
functions optimized for *P state of Hg. The original p exponents were then
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relaxed in HF optimizations for the 'S state in the presence of these two fixed
exponents. The final cc-pVnZ-PP basis sets were then obtained by first
generally contracting each HF set to [2s2p1d], where the contraction coefficients
for the 2nd contracted p function were taken from P calculations, then
uncontracting spd correlating functions from the HF primitive set, and finally
optimizing the appropriate correlation consistent groups of even tempered fgh...
correlating functions (see Figure 4) in CISD calculations. Explicitly these
consisted of:

cc-p VDZ-PP: (7s7p6d1f)/[4s4p3dif]

cc-p VTZ-PP: (10s9p7d2f1g)/[6s6pSd2f1g]

cc-p VQZ-PP: (12512p9d3f2g1h)/[1sTp6d3f2g1 h]
cc-pV5Z-PP: (14s14p11d4f3g2h1i)/[8s8pTdaf3g2hli]

Figure 6 displays the HF and CISD correlation energy errors with respect to
their estimated CBS limits for both the 'S state and P states of Hg. Systematic
convergence is observed for both states at the HF and CISD levels of theory. In
addition, the errors for each basis set at the CISD level are essentially identical
for both states.

Lastly, in order to accurately describe both the polarizability of Hg, as well
as core-valence correlation effects arising from the 5s and 5p electrons, two
augmentations of the cc-pVnZ-PP basis sets were developed. In the case of main
group elements, additional diffuse functions are generally optimized for the
atomic negative ions. This is not possible for Hg and hence aug-cc-pVnZ-PP
basis sets were generated from the cc-pVnZ-PP ones by a simple even tempered
extension of each angular momentum in the set. Calculations of the dipole
polarizability of the Hg atom at the CCSD(T) level of theory with these
augmented basis sets yield very good results: 34.77 (aug-cc-pVDZ-PP), 34.85
(aug-cc-pVTZ-PP), 34.82 (aug-cc-pVQZ-PP), 34.79 a.u. (aug-cc-pV5Z-PP)
compared to the accurate static experimental value, 33.92 a.u. (33). The
inclusion of 5s5p correlation with a aug-cc-pwCVTZ-PP basis set (see below) is
predicted to decrease the CCSD(T) values by 0.65 a.u. Applying this to the
valence-only aug-cc-pV5Z-PP result yields a best calculated value of 34.1 a. u.,
which is in excellent agreement with experiment.

In the case of core-valence correlation effects, correlating functions were
optimized at the CISD level of theory using the weighted core-valence scheme
(8). In this case a cc-pwCVTZ-PP set consisted of the cc-pVTZ-PP basis set
with the addition of 2s2p2d1f core-valence correlating functions.

All-electron basis sets for Hg

In order to benchmark the ECP results for Hg, all-electron correlation
consistent basis sets were also developed both with and without the inclusion of
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Figure 6. Basis set errors for the HF energy and CISD correlation energy with
the final cc-pVnZ-PP basis sets for the (O, B) IS and (O, @) *P states of
mercury. The open symbols correspond to the HF results (left axis), while the
filled symbols refer to the CISD correlation energies (right axis). Note that the
correlation energy results are plotted on a log scale.

scalar relativistic effects. For these basis sets, however, only a single HF
primitive set was optimized and this was used with the same number of
correlating functions as in the cc-pVnZ-PP basis sets. To further reduce the
computational cost for the primitive set optimizations, EXtET sets were used.
For the nonrelativistic basis sets, a (295s21p19d13f) HF set was optimized, which
was the same size as the previous well tempered basis set of Huzinaga and
Klobukowski (HK) (34). This was sufficient to give a triple-{ exponent
distribution for the Hg 6s orbital with an estimated HF basis set error of less -
than 0.1 mE,. After adding 3 diffuse p functions obtained by an even tempered
extension of this 21p set, the final HF energy for Hg ('S) was —18408.991298
E,, which is lower than that of HK by 0.8 mE,. In an analogous manner, an
ExtET HF set was also optimized for the Hg atom including scalar relativity by
using the Douglas-Kroll-Hess (DK) Hamiltonian (35,36). In this case it was
found necessary to increase the basis set to include (32s) and (23p) sets in order
to obtain the same relative accuracy as the nonrelativistic case. The HF-DK total
energy with this (325s26p19d13/) set (including the 3 diffuse p functions that
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were also added in this case as above) was —19604.012598 E,. The final basis
sets, cc-pVnZ-NR and cc-pVnZ-DK for nonrelativistic and DK-relativistic,
respectively, were obtained by adding correlating functions in the same
groupings as in the cc-pVnZ-PP sets and were optimized in either nonrelativistic
or DK-relativistic CISD calculations. In most cases, the spd correlating
functions were just uncontracted from the HF sets, except that for the VDZ basis
sets optimal CISD exponents were used due to the lack of appropriate functions
in the HF set. The final contracted basis set sizes were (identical sizes for both
NR and DK versions):

cc-pVDZ:  [8s8p5d2f]
cc-pVTZ:  [10s10p7d3/1g]
cc-pVQZ:  [11s10p8d4f2g1h)
cc-pVSZ:  [11s11p9d53g2hli]

For both the DZ and TZ sets a contracted function was included for the 6p
orbital, but this was deleted in the QZ and 5Z sets due to near linear dependence.
The 65 contraction was also deleted from the 5Z set for the same reason. Figure
7 plots the correlation energies for both nonrelativistic and DK-relativistic CISD
calculations. The CBS limits using a n” extrapolation of the QZ and 5Z
correlation energies are —391.8 and —418.0 mE,, for NR and DK, respectively.

Diffuse augmented basis sets were also developed for both the NR and DK
cases by simple even tempered extensions. Valence electrons correlated
CCSD(T) dipole polarizabilities calculated with the inclusion of DK scalar
relativity are 35.08 and 35.07 a.u. for aug-cc-pVQZ-DK and aug-cc-pV5Z-DK,
respectively. These values are about 0.3 a.u. larger than the PP values and
therefore somewhat further away from experiment.

Molecular Benchmarks
xX‘nyc

The yttrium monocarbide molecule was only recently observed under high
resolution by Simard et al. (37) using jet-cooled optical spectroscopy. The
ground electronic state was determined to be an Q=5/2 state, which was
consistent with the ab initio calculations of Shim et al. (38) who predicted a ‘I
ground state for YC in CASSCEF calculations. The experimental work of Simard
et al. yielded estimates for both the bond length and harmonic frequency of YC.
In addition to their CASSCF calculations, Shim et al. (38) also reported results
from mass spectrometric equilibrium experiments, which resulted in a bond
dissociation energy of Dy = 99.0 + 3.3 kcal/mol. The results from the present
work are shown in Table I. An open-shell coupled cluster singles and doubles
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Figure 7. All-electron correlation energies from non-relativistic (NR) and
DKrelativistic CISD calculations on the Hg atom using cc-pVnZ-NR and
cc-pVnZDK basis sets, respectively.

method with perturbative triples was used that was based on restricted open-
shell Hartree-Fock (ROHF) orbitals, R’'UCCSD(T) (33,39). Potential energy
functions were obtained by fitting 7 points to polynomials in simple
displacement coordinates, (r-r.), and the spectroscopic constants were obtained
by the usual Dunham analysis. The atomic energies were obtained using orbitals
with full symmetry equivalencing. As shown in Table I, the energetics and
spectroscopic constants obtained using the new cc-pVnZ-PP basis sets exhibit
very regular convergence towards their respective CBS limits. The core-
valence correlation effect on r, obtained at the R/UCCSD(T)/cc-pRWCVTZ
level of theory is substantial, —0.032 A, but is much more modest for the
dissociation energy, +0.69 kcal/mol. When these effects are added to the
R/UCCSD(T)/CBS results, the best predicted values for *TT YC are r, = 2.024 A,
©e =701 cm”, @, = 3.2 cm™, and D, = 78.8 kcal/mol. Of these quantities, only
the harmonic frequency is in reasonable agreement with the available
experimental results (37). The predicted bond length is smaller by 0.025 A,
while the calculated dissociation energy is smaller than the quoted experimental
result by 21 kcal/mol. These large discrepancies cannot be attributed to an
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Table I. CCSD(T) spectroscopic constants calculated for the “IT state of YC
using the new ECP-based cc-pVnZ-PP (VnZ-PP) and all-electron cc-pVQZ
(-NR and -DK) basis sets for Y and cc-pVnZ for C

. E, e w, WeX, a, D,
Basis Set (E,) A  (em')  (em’)  (em”) (kcal/mol)
VDZ-PP 75726302 20779 6686  3.75 0.0023 67.56
VTZ-PP -75.759918  2.0611 6848 347 0.0021 73.90
VQZ-PP 75770148 2.0572 687.1 345 0.0021 7626
V5Z-PP 275773510  2.0565 688.0 339  0.0021 77.15
CBS® 7577704 2.0557 6889 334  0.0020 78.09

wCVTZ(7)® -75.762 658  2.0577 685.1 3.53  0.0021 7431
wCVTZ(17)  -76.088016 2.0262 6969 337 0.0022 75.00

CBS+CV* 2.0241 700.7 3.18 0.0021 78.8

VQZ-NR -3369.643 638 2.0575 680.0 3.53  0.0021 79.44
VQZ-DK -3420.572 946 2.0600 686.2 343 0.0021 76.11

Expt. 2.050 68620 100+3

a Obtamed via a 2-point I/n’ extrapolation of the VQZ-PP and V5Z-PP total energies
b cc-pwCVTZ-PP (Y) and cc-pCVTZ (C) core-valence basis sets with valence-only (7)
and all-electrons (17) correlated.

¢ Obtained by addition of the CBS results of (a) with the core-valence effects of (b).

9 Refs. (37) and (38). The bond length is a ry value. Use of the ab initio a, yields r, =
2.049 A,
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inadequate correlation treatment; large scale MRCI calculations were also
undertaken and these results were entirely consistent with the R/UCCSD(T)
values. As evidenced by the all-electron DK results shown in Table I, errors due
to the PP approximation are also very small, e.g., only —-0.003 A in 7, and ~0.15
kcal/mol in D,. Futher experimental investigations of YC would clearly be
desirable.

X't HgH'

Recent calculations on the mercury hydride cation include the relativistic
Fock-space coupled cluster calculations of Visscher et al. (40) and Mosyagin et
al. (41), the generalized RECP-CCSD calculations of Mosyagin et al. (47), and
the quasirelativistic PP MRCI calculations by H3ussermann et al. (32). While
several of these calculations were very sophisticated, basis sets of only
approximately triple-zeta quality were used and the effects of 5s5p correlation in
Hg were not investigated. In the present work, the CCSD(T) method has been
used with the new cc-pVnZ-PP and aug-cc-pVnZ-PP basis sets for Hg to
calculate near-equilibrium potential energy functions (calculated analogously to
YC) and spectroscopic constants. Table II summarizes these results together
with both valence-only (12 electrons) and core-valence (20 electrons)
correlation calculations with the cc-pRwWCVTZ basis set (cc-pVTZ on H). Very
rapid convergence towards the CBS limit is observed for all of the derived
spectro scopic constants, as well as D,, as the basis set is expanded from DZ to
5Z. As expected, the extra diffuse functions provided by the aug-cc-pVnZ-PP
sets offer little overall improvement for HgH" but do result in slightly faster
convergence towards the CBS limits. Correlation of the 5s and Sp electrons of
Hg results in a shortening of the HgH bond by 0.008 A with a concomitant
increase in the harmonic frequency of 28 cm™. The dissociation energy is
increased by 1.6 kcal/mol. At the CCSD(T)/CBS level of theory with
corrections due to Ss5p correlation, the calculated spectroscopic constants are m
excellent agreement with experiment with deviations of just —~0.001 A, -8 cm’!
and —1.4 cm™” for r,, o, and o, respectively. The predicted dissociation
energy, however, differs from the uncertain experimental value by about 9
kcal/mol. At this level of theory, the theoretical value is expected to be the more
accurate quantity. All electron calculations on HgH® both with (DK) and
without (NR) the effects of scalar relativity are shown in Table III. At the
CCSD(T)/CBS level of theory, scalar relativity is predicted by the DK
approximation to reduce the bond length by 0.18 A and increase the harmonic
frequency by 334 cm™. Relativity also destabilizes the bond in HgH" by over
17 kcal/mol or nearly 40%. The DK results of Table III also demonstrate the
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Table II. CCSD(T) spectroscopic constants calculated for the X'T* state of
HgH" using the new ECP-based cc-pVnZ-PP (VnZ-PP) and aug-cc-pVnZ
(AVnZ-PP) basis sets for Hg. The cc-pVnZ and aug-cc-pVnZ basis sets were

used throughout for H
. E, r. w, WX, a, D,
Basis Set (Ey (4) (em™) (cm™) (em”)  (kcal/mol)

VDZ-PP -153.105334 1.6073 20184 433 0.205 57.07
VTZ-PP -153.205324 1.5982 19999 40.8 0.207 59.99
VQZ-PP -153.242 135 1.5987 2003.2 40.8 0.206 61.00
VS5Z-PP -153.256 701 1.6001  1995.1 40.3 0.205 61.34
AVDZ-PP  -153.132726 1.6110 1996.7 424 0.203 59.04
AVTZ-PP  -153.215076 1.6020 1986.1 40.6 0.206 60.65
AVQZ-PP  -153.245954 1.6008 1990.9 40.7 0.207 61.34
AV5Z-PP -153.258 507 1.6009 1991.6 40.1 0.205 61.54
CBS”‘ -153.27168 1.6009 1992.3 395 0.202 61.78
wCVTZ(12)® -153.211992 1.5974 19979 403 0.208 60.09
wCVTZ(20) -153.502982 1.5894 2026.0 403 0.210 61.68
CBS+CV 1.5929  2020.4 39.5 0.204 63.37
Expt. 1.5944  2027.7 40.9 0.206 72

“ Obtained via a 2-point 1/n’ extrapolation of the VQZ-PP and V5Z-PP total energies
b cc-pwCVTZ-PP core-valence basis set for Hg with valence-only (12) and all-electrons

(20) correlated.
° Ref. (49).

high accuracy of the PP used in the current work. At the CBS limit the ECP-
based spectroscopic constants differ from their all-electron DK values by just
—0.0015 A, 4.4 cm™', and -0.16 kcal/mol for r., o, and D, respectively.

X', Hg,

The Hg dimer has been the subject of numerous experimental and
theoretical studies. In particular, the high resolution experiments of Koperski et
al. (42-44) have resulted in accurate molecular parameters for the weakly bound
ground state, including the equilibrium bond distance and binding energy.
Recent ab initio studies include the work of Jordan and co-workers (45),
Schwerdtfeger et al. (/3), and Dolg and Flad (46). In each of these cases the
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Table 111 Spectroscopic constants of X'L* HgH' from all-electron CCSD(T)
calculations both with (DK) and without (NR) the approximate inclusion of
scalar relativistic effects’

E, re @e WeX, Q. D,

(Ey) (A (ecm') (em’) (em’) (kcal/mol)
AVQZ-NR -18409.671498 1.7849 1651.5 329 0.155 44.07
AVSZ-NR  -18409.683 530 1.7846 1657.1 342 0.153  44.23
CBS-NR  -18409.696 15 1.7842 1662.8 345 0.151 44.42

Basis Set

AVQZ-DK -19604.682494 1.6025 1994.1 41.0 0205 61.50
AVSZ-DK -19604.693 772 1.6024 19953 404 0204 61.72
CBS-DK  -19604.70560 1.6024 1996.7 396 0.202 61.94

ARel (CBS) -0.182 3339 5.1 0.052 17.5

“ The CBS limits were obtained via 2-point 1/n* extrapolations of the QZ and 5Z total
energies.

relativistic PP of H4ussermann et at. was used with relatively large 1-particle
basis sets in order to minimize the basis set superposition error (BSSE). In
addition, Kunz et at. (47) have reported all-electron calculations on Hg,
employing the Douglas-Kroll-Hess Hamiltonian. In each of these studies, high
level electron correlation methods were employed such as CCSD(T) and good
agreement with experiment was generally obtained, but the basis sets used did
not allow an extrapolation to the complete basis set limit, which limited the
accuracy attainable in these studies.

The results using the new aug-cc-pVnZ-PP basis sets at the CCSD(T) level
of theory are shown in Table IV. In each case the spectroscopic constants were
obtained from fits of 10 points spanning the range from 6.4 — 8.2 a, and the
results of fits to both total energies and interaction energies obtained by the
application of the function counterpoise method (CP) for the removal of BSSE
are shown. In both cases, systematic convergence towards the CBS limit is
observed for all quantities. At the CBS limit both the CP-corrected and
uncorrected values are nearly identical, which provides a good check of the
extrapolation procedure. As also shown in Table IV, correlation of the 5s and 5p
electrons of Hg results in a significant shortening of the Hg-Hg bond, —0.035 A,
and an increase in the binding energy of about 14 cm™. Previous workers
(45,46,48) have also investigated the effects of correlating the Ss and Sp
electrons, but their results for the bond shortening due to core-valence
correlation were all much too large, -0.1 A at the MP4 level (46) to —0.07 A at
the MP2 level (48). In each case these large values can probably be attributed to

In Electron Correlation Methodology; Wilson, A., el al.;
ACS Symposium Series; American Chemical Society: Washington, DC, 2007.



/002 ‘0a ‘uoibuiysepn :A19100S [edlwayD uedlsWy ‘sales wnisodwAs SOV
“Ie |8 'V ‘UoS|IM ‘ABOJOpOUISIAl UoIR|S1I0D) U0J193|T U]

Downloaded by TECHNISCHE UNIV MUENCHEN on October 23, 2009 | http://pubs.acs.org

Publication Date: March 13, 2007 | doi: 10.1021/bk-2007-0958.ch008

Table IV. Spectroscopic constants calculated for the X'Z; state of Hg; at the CCSD(T) level of theory using the new

ECP-based aug-cc-pVnZ-PP (AVnZ-PP) basis sets

Basis Set E. re w, @ De |7 cP? @ wx(cP® D,
(En) A (m) em) (m?) A (CP);" em™) (CP)la)
(cm’™) cm”)
AVDZ-PP -305.827496 39022 17.68 020 381.95 | 42064  12.28 022 171.38
AVTZ-PP -305.992071 3.8643 17.06 021 31101 | 39099 1621 0.22 277.42
AVQZ-PP -306054972 3.7816 1823 023 34453 | 38047 1777 0.23 326.49
AV5Z-PP -306.080 520 3.7566 18.74 023 359.58 | 37715  18.43 023 348.15
cBs? -306.10733 37310 1928 023 37606 | 3.738 19.1 0.23 372.1
AWCVTZ (24)°” 39049 1625 0.22 278.58
AWCVTZ (40) 38697 1673 0.22 292.25
CBS+CV 3.704 19.8 023 391.3
cBs+cv+so? 3.687 19.8 0.23 399
Expt® 3.69+0.01 19.620.3 025005  380+15
Selected other work
Ref. (46) ? 3729 194 024 379
Ref. (45) 3718 194 024 379
Ref. (13) ® 3.743 18.4 28 328

? Derived from fits to the counterpoise-corrected interaction energies.

b Obtained via 2-point l/n3 extrapolations of the QZ and 5SZ total energies and CP-corrected interaction energies.

¢ aug-cc-pwCVTZ-PP core-valence basis set for Hg with valence-only (24) and all-electrons (40) correlated.

d CBS plus core-valence effects of (c) with the addition of spin-orbit effects from Ref, (46) (2-clectron SO-PP values)

© Ref. (42-44).

S Includes 5s5p core-valence and spin-orbit corrections These values were cited in Ref. (13).

£ Includes spin-orbit corrections.
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defects in the basis set, i.e., sufficient core-valence correlating functions were
not included. After applying our core-valence corrections to the CCSD(T)/CBS
limit results, excellent agreement with experiment is obtained with all quantities
being nearly within the experimental uncertainties. As shown by Dolg and Flad
(46), however, the spin-orbit effects on the spectroscopic constants are not
negligible. While there seems to be some uncertainty in the exact magnitude of
this effect, addition of SO corrections from their work does seem to slightly
improve the agreement with experiment for the equilibrium bond length. Larger
corrections have also been used (/3), however, but application of these
quantities would result in a r, too short compared to experiment. On the other
hand, the CBS limit bond length is over 0.03 A shorter than the aug-cc-pVSZ-PP
result, from which one might suspect that the 2-point extrapolation scheme may
be overshooting the actual valence correlated CBS limit.

The results from all-electron calculations on Hg, are shown in Table V. At
the valence correlated (5d6s) CBS limit, scalar relativity is calculated to result in
a bond length contraction of 0.165 A and a destabilization of the bond by 51
cm™ or ~12%. The bond length contraction is in nearly exact agreement with the
small basis set PP results of Schwerdtfeger et at., but in their work the bond was
actually slightly stabilized (+23 cm™) by scalar relativity at the MP2 level of
theory. With their basis set, however, MP2 overestimates the binding energy of
Hg, by nearly a factor of 3.5 compared to QCISD(T), hence it is much less
reliable than the present results. In fact, as shown by Dolg and Flad (46) even
MP4 yields a binding energy nearly a factor of 2 too large compared to
CCSD(T) or QCISD(T), which could explain the poor results for the effects of
5s5p correlation. On comparing the present all-electron CCSD(T)-DK/CBS
results to the valence-only CCSD(T)/CBS PP results, the binding energies are
very similar in both cases, differing by only ~7 cm™. The bond lengths and
harmonic frequencies dlffer however, by more than expected amounts, i.e.,
—0.025 A and 0.6 cm™’, respectively. Given the excellent agreement between PP
and all-electron results in the case of HgH", the origin of these differences are
not clear at this time. As mentioned above, the all-electron DK dipole
polarizabilities are also somewhat too large, which may also be reflecting
residual errors in the 2nd-order DK approximation. Perhaps 3rd-order DK
calculations could determine if the problem lies in the present all-electron
treatment of scalar relativity.

Summary

New correlation consistent basis sets have been developed for Y and Hg in
conjunction with accurate small-core relativistic pseudopotentials. A few all-
electron basis sets have also been optimized both with and without the inclusion
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Table V. Spectroscopic constants of x'zg* Hgz from all-electron CCSD(T) calculations both with (DK) and without

(NR) the approximate inclusion of scalar relativistic effects”

Basis Set E. re w, De re (CP) we (CP) D. (CP)
(Ew) () (cm'l) (cm'l) (4) (em™) em’)
AVQZ-NR -36818.818 355  3.9395 17.40 405.81 3.9577 16.87 387.00
AV5Z-NR -36818.842764  3.9108 17.74 419.00 3.9193 17.60 411.22
CBS-NR -36818.868 38 3.880 18.2 433.7 3.881 18.5 438.0
AVQZ-DK -39208.927 041 3.7636 18.35 351.60 3.7867 17.87 335.94
AV5Z-DK -39208.949 988  3.7373 18.88 366.58 3.7518 18.24 356.24
CBS-DK -39208.974 07 3.715 19.7 383.0 3.713 18.5 378.9
ARel (CBS) -0.165 1.5 -51 -0.168 0.0 -59

“ The CBS limits were obtained via 2-point l/n3 extrapolations of the QZ and 5Z total energies and CP-corrected interaction energies
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of scalar relativity. Molecular benchmark calculations were reported for the
electronic ground states of YC, HgH’, and Hg,. In each case systematic
convergence to the CBS limit was observed for the calculated energetics and
spectroscopic constants. After the accurate inclusion of core-valence correlation
effects, excellent agreement with experiment was observed where experimental
information was available (HgH" and Hg,) and accurate predictions for the
molecular parameters of YC were made. For the more strongly bound YC and
HgH" molecules, the CBS limit results obtained in PP calculations with the cc-
pVnZ-PP basis sets were nearly identical with all-electron results using the DK
approximation. In the case of the Hg dimer, the CCSD(T)/CBS equilibrium
bond distance from all-electron calculations was somewhat shorter than the PP
result and seemingly further from experiment.

The basis sets reported in this work can be obtained from the author on
request.
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Chapter 9

Multilevel Methods for Thermochemistry
and Thermochemical Kinetics

Benjamin J. Lynch and Donald G. Truhlar

Department of Chemistry and Supercomputer Institute, University

of Minnesota, Minneapolis, MN 554550431

This chapter presents an overview of the performance of
current multilevel methods for computational thermochemistry
and thermochemical kinetics. Multilevel methods extrapolate
to the exact solution of the electronic Schodinger equations by
using calculations carried out with two or more levels, where a
level is a combination of a specific form for the many-electron
wave function and a specific one-electron basis set. This
chapter compares the performance for thermochemistry and
thermochemical kinetics of several multilevel methods,
including scaling-all-correlation (SAC), complete basis set
(CBS) methods, multi-coefficient correlation methods
(MCCM), and Gaussian-3 extended (G3X) methods. It also
compares these methods to hybrid density functional theory,
and additional calculations are presented to test the importance
of diffuse basis functions on hydrogen. In order of decreasing
cost, the G3SX(MP3), MCG3/3, MC-QCISD/3, CBS-4,
mPWIPW91/MG3S, and SAC/3 methods are shown to
provide especially good performance-to-cost tradeoffs.

© 2007 American Chemical Society
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Introduction

Computational thermochemistry and computational thermochemical
kinetics are based on the Born-Oppenheimer approximation and the use of
quantum-mechanical electronic structure theory to calculate potential energy
surfaces. The electronic structure methods may be based on interacting-electron
wave functions or on density functional theory. The present overview is
primarily concerned with the former approach. The starting point is Hartree-
Fock (HF) theory. In HF theory, the electrons occupy a set of molecular orbitals,
which are an orthogonal set of one-electron functions typically constructed from
linear combinations of atom-centered basis functions. In HF theory, each
electron moves in the average field of the other electrons, and so the correlated
motion of the electrons is ignored. This is sometimes called a single-
configuration method, and explicitly correlated wave functions based on an HF
starting point are called single-reference methods. The error in energy due to the
HF approximation is called the correlation energy (/). Neglect of the correlation
energy leads to many systematic errors in the predicted thermochemical and
dynamical properties at the HF level. The cost and poor performance of HF
calculations have engendered the development of a variety of more cost-efficient
semi-empirical methods. Two very popular semi-empirical methods related to
HF theory are AM1 (2,3) and PM3 (4). These methods remove the most
expensive parts of a minimum-basis-set HF calculation, and they introduce 15
empirical parameters for each element. The empirical parameters effectively
estimate the parts of HF theory that are ignored, and they also implicitly account
for effects due to extended basis sets and correlation energy. Methods like AM1
and PM3 tend to outperform minimum-basis-set HF for most problems of
chemical interest.

Although semi-empirical methods like AM1 and PM3 are fairly accurate,
especially considering their low cost, we need to pursue higher levels of theory
to attain chemical accuracy (~ 1 kcal/mol) in calculating quantities such as bond
strengths, electron affinities, ionization potentials, and reaction barrier heights.
To achieve higher accuracy, we can use larger basis sets and explicitly account
for electron correlation. Full configuration interaction (FCI) accounts for all
electron correlation energy within the limitations of the one-electron basis set.
This type of calculation is prohibitively expensive for all but the smallest of
systems, and it is even more expensive to converge the calculation with respect
to the size of the one-electron basis set. Therefore we introduce empirical
parameters or we extrapolate, or both. For example, we can employ partial
treatments of electron correlation, and then use empirical parameters to
extrapolate from two or more incomplete levels of calculation to the exact
solution. Such calculations, based on two or more levels, are called multilevel
methods. All of the multilevel methods presented here include explicitly
correlated, extended basis ‘set, post-HF calculations, and so the empirical
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parameters in these methods need only to account for high-level electron
correlation and the remaining basis set effects. By using extended-basis-set post-
HF calculations as our starting point, we can attain higher accuracy than is
possible with AM1 and PM3 semi-empirical methods. A disadvantage though, is
that the popular post-HF methods scale as N°, N, or N’ (for large N) as the
number of atoms N is increased (5), and the coefficient of N° becomes larger as
the number of basis functions on each atom is increased. (We will give the
scaling exponent a for various methods in section 3.)

One of the first methods to take advantage of the systematic nature of the
errors in explicitly correlated ab initio methods and extrapolate toward complete
configuration interaction (CCI, which is the combination of FCI with a
converged one-electron basis set) is the scaling external correlation (6) (SEC)
method. This method scales the correlation energy calculated from a multi-
reference wave function. Although it has been shown to be very accurate, the
calculation of the correlation energy from a multi-reference wave function is
computationally expensive and technically difficult. The scaling-all-correlation
(7-11) (SAC) method was therefore developed as a simplified method that only
requires the correlation energy to be calculated with a single-reference wave
function. Though it is less accurate than SEC, SAC is much more cost-efficient.

MCCM methods (/1-18) are the general class of methods that use a linear
combination of explicitly correlated ab initio calculations with two or more
basis sets and two or more levels of electron correlation. The linear
combinations extrapolate the correlation energy and the basis set to the CCI
limit. One example of an MCCM is MCG3/3 (I8), which has been shown (/8)
to calculate bond energies with less than 1/ 10™ the error of CCSD(T)/aug-cc-
pVTZ (19,20) at less than 1/100% the cost. (All “costs” in this paper are based on
gradient calculations as explained below.) This comparison is especially striking
because the CCSD(T) method is sometimes called “the gold standard,” due to its
high accuracy. Furthermore, the accuracy of MCG3/3 in calculating reaction
barrier heights is only achieved by ab initio methods that are about 100 times
more expensive (/8).

Increasing either the basis set or the explicit level of correlation greatly
increases the cost of ab initio calculations. If high-level correlation effects could
be accurately estimated with a small basis, and large-basis-set effects could be
estimated with a low level of correlation, then a large-basis high-level-
correlation calculation would be unnecessary. Methods such as Gaussian-2 (2/-
23) (G2), Gaussian-3 (24,25) (G3), and G3 extended (26) (G3X) use such an
additive approximation to reduce the cost of explicitly correlated calculations. In
particular, starting with a modest ab initio calculation, various high-level and
larger-basis-set contributions are estimated separately and assumed additive.
Furthermore, an empirical correction, called the high-level-correction (HLC), is
added to account for missing higher-level effects and nonadditivity, which may
also be considered a higher-level effect. As an example, consider the G3 and
G3X methods. In these methods the 6-31 G(d) basis is used to calculate the
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energy with quadratic configuration interaction with double and single
excitations and quasipertubative connected triples (QCISD(T)) (27), and larger-
basis-set effects are added on by calculations with lower levels of electron
correlation. This effectively approximates a large-basis-set calculation at the
QCISD(T) level of theory. Finally, a HLC that is a function of the number of
valence electron pairs and unpaired electrons is added in an attempt to
extrapolate to CCI. The G2, G3, and G3X methods all have the disadvantage of
discontinuous potential energy surfaces because of the form of the HLC. In
response to this problem, the MCCM-style methods G3S (/5) and G3SX (26)
were developed. These are similar to G3 and G3X, but they scale various energy
components (as in SAC and MCG3) rather than assuming separability and
correcting systematic errors with a HLC. The same group (26) has also
developed less expensive methods in which MP3 or MP2 calculations are
substituted for more expensive calculations in certain steps; we will consider
two such methods, namely G3SX(MP3), and G3 SX(MP2).

The CBS methods of Petersson and coworkers (22,25,28-30) extrapolate the
basis set and add empirical terms to extrapolate to experiment. Two especially
powerful versions of the CBS approach are CBS-4 (30) and CBS-Q (30). For
CBS-Q, the empirical terms are based on the overlap matrix and the spin
contamination (which arises in some partial treatments of the electron
correlation). CBS-4 also includes these terms plus a term based on the number
of electrons in the system.

A qualitatively different approach to the problem of treating electron
correlation is provided by the Kohn-Sham implementation of density functional
theory (DFT) (31,32) and the empirically more successful hybrid DFT (32-34).
Although this is not the primary focus of the current paper, hybrid DFT results
will be presented for comparison to the multilevel methods. In hybrid DFT, the
correlation energy and a portion of the exchange energy are accounted for by a
density functional. Very useful hybrid DFT functionals include B3LYP (35,36),
mPWI1PW91 (37), MPWIK (38), and PBE1PBE (39,40) which are functionals
based on the density and magnitude of the local gradient of the density. (We
note that mPWIPW91, MPW1K, and PBE1PBE are sometimes called MPW25,
MPW42.8, and PBEO, respectively.) Like other methods that do not explicitly
account for electron interactions, hybrid DFT is not systematically improvable.
Increasing the basis set can often improve the quality of the results (4/,42);
however, just as for ab initio methods, there is no guarantee that it will.

Section 2 describes the methods used and the experimental test data used
for comparison. Section 3 presents results and discussion, and Section 4 gives
conclusions.

Methods and Test Data

All electronic structure calculations in this paper were performed with
GAUSSIAN9S (43). All calculations use the spin-restricted formalism for closed
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shells and the spin-unrestricted formalism for open-shell systems. The four basis
sets explicitly discussed and used in calculations are 6-31G(d)(44), 6-31G(2df,p)
(44), MG3 (14,45), and MG3S (42). We note that the MG3 basis is identical to
6-311++G(3d2f,2df,2p) (44,46) for atoms H through Si, but is an improved
version of this basis for atoms P—Cl; it includes a diffuse s function on H and a
diffuse sp shell on Li through Cl, and it is a modification (/4) of the G3Large
basis (24) of Curtiss et at. MG3S is the same except the diffuse functions on H
atoms are deleted (42). Several other basis sets are used as part of the multilevel
techniques, and they are as described in the original papers.

For all results in this paper, spin-orbit coupling corrections have been added
to open-shell calculations from a compendium given elsewhere (/0); we note
that this consistent treatment sometimes differs from the original methods
employed by other workers, e.g., standard G3 calculations include spin-orbit
contributions only for atoms. In the SAC and MCCM calculations presented
here, core correlation energy and relativistic effects are not explicitly included
but are implicit in the parameters (i.e., we use parameters called versions 2s and
3s in the notation of previous papers (/1,16,18)).

The hybrid DFT methods used here are B3LYP (35,36), PBEIPBE
(39,40,47), mPWIPW91 (37), and MPWI1K (38). The ab initio methods
discussed in this article include HF, MP4SDQ (44), and QCISD(T) (27). We
consider only one pure DFT method, namely BLYP (48,49).

The cost function used in all tables and figures is the sum of the time to
calculate an energy, gradient, or Hessian (as stated in each case) for the two
molecules, 1-phosphinopropane and 2,2-dichloro-1-ethanol, with a single
500MHz R14000 processor on a Silicon Graphics Origin 3800 with the
GAUSSIAN98 (43) electronic structure package normalized by dividing by the
sum of the times for MP2/6-31 G(2df,p) gradient calculations on the same two
molecules with the same program on the same computer. The test molecules
were chosen to give a balanced cost at a variety of levels and sizes of basis sets.
The cost for calculations with basis sets such as aug-cc-pVTZ (20) will be
dominated by the cost of 1-phosphinopropane, which has nine hydrogen atoms,
because aug-cc-pVTZ includes a very large number (23) of basis functions for
each hydrogen atom. The cost of calculations using the MG3 or MG3S basis set
will tend to be dominated by the cost of 2,2-dichloro-1-ethanol, which has two
second-row atoms, because these basis sets weigh more heavily on 2™ row
atoms rather than hydrogen.

The test set used for most comparisons in the present paper is Database/3
(18), which was introduced elsewhere. It consists of 109 atomization energies
(AEs), 44 forward and reverse reaction barrier heights (BHs) of 22 reactions, 13
electron affinities (EAs), and 13 ionization potentials (IPs). There are a total of
513 bonds among the 109 molecules used for AEs, where double or triple bonds
are only counted as a single bond. Note that all ionization potentials and electron
affinities are adiabatic (not vertical), i.e., the geometry is optimized for the ions
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as well as the neutrals. Our tests in the present paper will also include 2 data for
LiH (see below) and 22 values AE o, Which are the zero-point-exclusive
energies of reaction for the 22 reactions in the database. All mean unsigned and
root-mean-squared errors in the tables and text are unweighted averages over the
specified data.

Database/3 and the other data used in this paper consist entirely of zero-
point-exclusive data, which allows for direct comparisons with calculated Born-
Oppenheimer potential energy surfaces, i.e., the sum of the electronic energies
and nuclear repulsion. Although the G3X and CBS families of methods have
standard geometry and frequency calculations associated with them, in this
paper only the potential energy surfaces are required to compare with
Database/3. The geometries used are optimized QCISD/MG3 geometries for all
calculations in this paper.

One additional system, namely LiH, is discussed in this paper. The heat of
formation and electron affinity of LiH are taken from the G3/99 (50) data set.
The zero-point-exclusive atomization energy (D.) was obtained from the heat of
formation using the method described elsewhere (/0). The electron affinity is
converted into a zero-point exclusive electron affinity by removing the neutral
and anionic zero-point energies calculated at the mPW1PW91/MG3 level and
scaled (/8) by 0.9758.

Discussion

Diffuse functions are often omitted on hydrogen because hydrogen has a
lower electronegativity than many elements of general interest (C, N, O, F, S,
Cl), and there is very little electron density around hydrogen. Hydrogen is the
most numerous atom type in many systems of interest (e.g., amino acids and
carbohydrates), and for methods to be cost-effective it is important not to use too
many basis functions on such a common atom. The MCG3/3 and MC-QCISD/3
methods have no diffuse functions on hydrogen for any component of the
calculation, and they perform very well compared to multilevel methods that use
diffuse functions on hydrogen for one or more components (CBS-4, CBS-Q,
G3X, G3SX, MCG3/2, MC-QCISD/2). It is desirable to test the limits of this
observation, and the calculations presented next are designed to do this. If
diffuse functions are required for systems where hydrogen is bonded to a less
electronegative atom, then a metal hydride system, such as LiH (which is not in
Database/3) may be poorly treated. Tables 1 and 2 test this hypothesis. Table 1
presents calculations of the electron affinity (EA) and atomization energy (AE)
of LiH by methods that do not include diffuse functions on H, and Table 2
presents calculations of these same quantities by methods that do include diffuse
functions on H. It can be seen in Table 1 that MCG3/3 and MC-QCISD/3
perform very well on the LiH AE and EA. On average they outperform MCG3/2
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Table 1. Atomization energies and electron affinities (kcal/mol)
for LiH at QCISD/MG3 geometries for methods that do not
involve diffuse functions on hydrogen.

Method AE’ EA’ MUE*
Experiment 57.4 7.9 e
QCISD(T)MG3S 55.9 6.6 1.4
MCG3/3 58.0 79 0.3
MP4SDQ/MG3S 55.4 6.5 1.7
MC-QCISD/3 57.8 6.9 0.8
MC-UT/3 57.3 6.5 0.7
MC-CO/3 54.5 5.9 24
B3LYP/MG3S 58.3 9.7 1.4
PBEIPBE/MG3S 527 9.6 32
mPWIPW91/MG3S 53.2 9.7 3.0
MPWIK/MG3S 52.8 9.6 3.1
BLYP/MG3S 57.9 7.5 0.5
SAC/3 49.8 5.2 5.1
AMI 58.7 -15.1 12.1

“atomization energy
b electron affinity
¢ mean unsigned error in AE and EA

Table 2. Atomization energies and electron affinities (kcal/mol)
for LiH at QCISD/MG3 geometries for methods that involve
diffuse functions on hydrogen.
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Method AE’ EA® MUE*
Experiment 574 7.9 e
QCISD(T)MG3 55.9 6.8 1.3
G3SX 57.9 7.8 0.4
G3X 57.3 8.8 0.5
CBS-Q 57.6 6.8 0.7
G3SX(MP3) 58.0 7.8 0.3
G3SX(MP2) 57.6 7.2 0.5
G3X(MP3) 57.0 9.5 1.0
MCG3/2 58.1 9.0 0.9
MP4SDQ/MG3 55.4 6.7 1.6
CBS-4 55.3 9.5 1.8
MC-QCISD/2 57.5 8.6 0.4
B3LYP/MG3 58.3 9.8 1.4
mPWI1PW91/MG3 53.1 9.8 3.1

? atomization energy
b electron affinity
° mean unsigned error in AE and EA
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and MC-QCISD/2, both of which have a component calculation that involves
diffuse functions on hydrogens (and therefore these methods are in Table 2). On
the whole, the accurate multilevel methods in Table 1 (MCG3/3, MC-QCISD/3)
and the hybrid DFT methods mPWI1PW91 and B3LYP do not have
systematically higher errors than the methods in Table 2. Therefore, since metal
hydrides are seemingly a “worst case” for omitting diffuse functions on H, it
appears to be confirmed that diffuse functions on hydrogen have little
importance for most thermochemical calculations. Tables 3, 4, and 5, which are
discussed next include errors on the two LiH test cases in the “All data” rows.

Table 3 shows the errors for the multilevel methods that scale (5) as N,
where N is the number of atoms (in this table and in Table 4 the methods are
arranged in order of decreasing cost for gradient calculations). Table 3 also
shows one single-level method, namely QCISD(T)/MG3S. All of the multilevel
methods in Table 3 have similar mean unsigned errors, in the range (all errors
quoted in the text are mean unsigned errors for all data) of 0.84-1.20 kcal/mol.
However they have gradient costs varying by over an order of magnitude, from
45 to 460. Thus they have a broad range of performance-to-cost ratios. G3SX is
both the most expensive and the most accurate among these methods. However
if gradient calculations are required, MCG3/3 and G3SX(MP3) are only about
one tenth the cost of G3SX, and the increase in MUE is less than 15% as
compared to G3SX. The MCG3/3 method not only has a relatively low cost for
gradients, it also has a relatively low cost for energies. Furthermore, the single-
level method in Table 3 is not competitive in terms of either cost or accuracy.

Table 4 gives the errors for the multilevel methods with much lower costs.
These methods are ideal for geometry optimizations or frequency calculations
on many systems and for energy calculations on very large systems. These
methods are, however, still much more accurate than any ab initio method of
similar cost. To illustrate this Table 4 also gives the results for a single-level N®
method for comparison. We also note that MC-QCISD/3 has an error only 27%
larger than CBS-Q, but a gradient cost 14 times less. The CBS-4 method has an
error 44% larger than MC-QCISD, but a gradient cost 2 times smaller. SAC/3
method has a mean unsigned error 2.5 times larger than CBS-4, but the cost is 9
times lower yet. If one considers larger systems, eventually the N° methods
become the winner because in the limit of large N their cost rise more slowly
than the other methods in Tables 3 and 4.

Table 5 gives the errors for a DFT method, four hybrid DFT methods, and
AMI1. Although hybrid DFT is very affordable, it lacks the accuracy of multi-
coefficient semi-empirical methods based on explicitly correlated wave
functions. Nevertheless the mPWI1PW91/MG3S and AMI1 methods have
performance/cost characteristics that put them near the envelope of best
performance in Figure 1. AMI is valuable for larger systems where the other
methods in the figure are not affordable.

Figure 1 is a scatter plot of the MUE over Database/3 versus the cost of a
gradient for all methods in tables 3-5. Notice that the abscissa spans seven
decades of cost.
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Table 3. Mean Unsigned Errors (kcal/mol), Root-Mean-Square Errors, and Times at QCISD/MG3 Geometries for

Methods with N’
Quantity Item Q%SGD;ST y G3SX G3X CBS-Q G3SX(MPS) G3SX(MP2) G3XMP3) MCG3/3
MUE Atomization energies (109) 15 06 087 0.86 1.42 095 1.23 102 104
Error per bond (513) 32 018 0.18 030 020 026 022 022
Barrier heights (44) 1.37 081 107 0.87 0.94 0.92 1.26 101
AEpxn (22) 098 055 088 086 063 0.84 097 090
Electron affinities (13) 372 106 127 112 1.00 142 160 0.92
Ionization potentials (13) 2.78 107 1.81 126 134 154 211 095
All Database/3 data (179)° 998 0.88 101 125 0.98 119 1.20 1.01
All data (203 892 084 099 120 094 115 117 099
RMSE  All Database/3 data (179) 1370 124 1.39 175 1.33 168 1.64 138
All data (203) 12.87 1.20 137 170 129 163 161 1.33
Cost Energy 50 135 135 38 81 5.3 79 33
Gradent 3100 460 450 79 66 56 54 45
Hessian 200000 29000 29000 4600 3500 3200 2700 2600

“based onrows 1,3, 5, and 6.
# Database/3 plus 22 values of AE and atomization energy and electron affimity of LiH

191
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Table 4. Mean Unsigned Errors (kcal/mol), Root-Mean-Square Errors, and Times at QCISD/MG3
Geometries for Methods with N® and N° Scaling

(4]
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Quantity ltem M&"(S;%Q’ MC-QCISD/3 MC-UT/3  MC-CO/3 CBS-4 SAC/3
MUE  Atomization energics (109) 2191 173 217 3.23 278 6.48
Error perbond (513) 4.66 0.37 0.46 0.69 0.59 1.38

Barrier heights (44) 3.95 1.33 2.69 3.23 1.64 3.64

AEgxw (22) 1.28 0.9 0.69 1.38 0.64 2.30

Electron affinities (13) 4.92 1.38 1.42 211 211 7.82

lonization potentials (13) 3.00 1.95 1.94 2.09 2.28 8.64

All Database/3 data (179)° 14.89 1.62 222 3.07 241 604

All data (203)? 13.29 1.53 2.04 2.88 2.21 5.63

RMSE  All Database/3 data (179) 19.68 2.09 317 4.23 3.27 7.53
All data (203) 18.49 2.01 3.00 4.03 3.10 7.18

Cost scaling 6 6 6 5 6 S
Cost  Energy 49 1.9 1.7 17 1.0 0.078
Gradient 27 5.5 5.0 4.9 27 0.31

Hessian 1700 140 110 100 110 6.3

“based onrows 1, 3, 5, and 6
¢ Database/3 plus 22 values of AE and atomization energy and electron affinity of LiH.
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Table 5. Mean Unsigned Errors (kcal/mol), Root-Mean-Square Errors, and Times for hybrid DFT and
DFT Methods and AM1 at QCISD/MG3 Geometries

MUE  Atomization energies (109) 3.56 4.36 4.23 11.02 7.05 26.70
Error per bond (513) 0.89 0.93 0.90 2.34 1.50 5.67

Barrier heights (44) 3.56 4.19 4.25 1.63 7.42 9.09

AEpyn (22) 1.15 126 2.16 1.31 2.60 9.53

Electron affinities (13) 262 2.78 2.29 3.71 2.63 17.61

Ionization potentials (13) 372 3.24 4.72 3.53 4.87 16.01

All Database/3 data (179)° 3.88 4.12 4.13 7.64 6.66 2093

Alldata (203) 3.58 3.80 3.89 6.86 6.16 19.61

RMSE  All Database/3 data (179) 491 5.40 5.73 10.32 8.57 28.98
All data (203) 4.65 5.12 5.46 9.69 8.13 27.58

Cost scaling 4 4 4 4 4 3
Cost Energy 1.2 1.2 1.2 1.2 1.2 2x1073¢
Gradient 1.7 1.7 1.7 1.7 1.7 4x103¢

Hessian 12.7 12.7 12.7 12.7 12.7 4x103¢

“based on rows 1, 3, 5, and 6.
® Database/3 plus 22 values of AE and atomization energy and electron affinity of LiH
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Figure I. Mean unsigned error over all 203 data vs. gradient cost for AMI (m),
ab initio (0), CBS (a), G3 (O), MCCM (®), DFT (v), and hybrid DFT (»)
methods. The figure includes all the methods that are included in Tables 3-5.
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Conclusions

The comparisons in this paper indicate that diffuse functions on hydrogen
atoms have little effect on the performance of multilevel methods. Furthermore,
tests against 209 data show that multilevel methods provide very attractive
performance levels for a given cost for applications requiring thermochemical
calculations. We also note that some multilevel methods have performance-to-
cost ratios that rise above the rest of the crowd of even the very select group of
highly efficient methods considered here. Among N’ methods, G3SX(MP3) and
MCG3/3 methods have very favorable costs and only mild loss in accuracy as
compared to the most accurate levels. MC-QCISD/3 has the best performance
among N® methods, with a MUE over all data of 1.5 kcal/mol. Another N
method with notable performance is CBS-4, which has an error over all data of
2.2 kcal/mol.
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Chapter 10

A Nonlocal Energy Functional Derived from the
Fluctuation—Dissipation Theorem

Katharine L. C. Hunt

Department of Chemistry, Michigan State University,
East Lansing, MI 48824

In the Bom-Oppenheimer approximation, the electronic
energy of a molecule is a functional of the electron density and
the nonlocal charge-density susceptibility. The electron-
electron interaction energy differs from the Coulomb energy
of a classical charge distribution with the same averaged
charge density (6.("», because of correlations between
spontaneous, quantum mechanical fluctuations in the charge
density. By the fluctuation-dissipation theorem, these
correlations are related to the imaginary part of the charge-
density susceptibility. Use of the virial theorem for the kinetic
energy of the electrons yields a functional for E that is simple
and exact, but non-variational.

The electronic energy E of a molecule depends on the nuclear coordinates
{Rn}, the nuclear charges {Zy}, the average electronic charge density <6e (r))
and the charge-density susceptibility x(r,r’;iw) at imaginary frequencies (/). By
definition, x(r,r";0) gives the change in the electronic charge density at point r,
due to the application of a perturbing potential of frequency  at r’ (2). The total
electronic energy of a molecule with a fixed nuclear configuration {Ry} is (/)

This chapter is adapted with permission from reference 1. Copyright 2002 American
Institute of Physics.
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E=112Z\Zy [dr(p,(r))/|r-Ry|
+ 1/4"’drdr'(f>e(r))(|5e (r'))/|r—r'|
+ (h/4n) Ldrdr’fdmx(r,r';im)/|r—r'|

+ (1/2)2N.aZNRNa jdr(f)e (r»(RNa - )/lr -Ry |3 : M

The sum over N runs over all of the nuclei in the molecule, and the sum over a
runs over the Cartesian coordinates x, y, and z. The subscript —¢ on the integral
containing x(r,r’;io) indicates that an infinitesimal region around r = r’ is
excluded from the range of integration.

The potential energy (V) of the electrons is the quantum mechanical
average of the total Coulomb energy V.y of electron-nuclear interactions and the
instantaneous Coulomb energy V. of electron-electron interactions. The
expectation value of the electron-nuclear interaction energy (V.y) is identical to
the Coulomb energy of interaction between the nuclei and a classical charge
distribution with the charge density <6e (r)) In contrast, the electron-electron
interaction energy (V.. differs from the internal Coulomb energy of the static
charge distribution (f)e (r)), because the electronic charge density fluctuates
spontaneously about its average value, and the fluctuations are correlated. In
addition, self-interaction effects, which are contained in the internal Coulomb
energy of the full static charge distribution, must be removed to obtain (V..).
Exchange and correlation are included in the energy E primarily through their
contributions to the difference between the averaged product of the charge
densities (P, (r,t)) (p.(r',t))and the product of the averages
(p. (r,t)) (p.(r',t)). The averaged product determines (V..), while the
product of the averages determines the static electronic Coulomb energy.
Exchange and correlation also affect the average charge density (ﬁe (r)) , hence
affecting (Vn).

For an individual molecule, fluctuations of the instantaneous electronic
charge density away from its quantum mechanical average are characterized by
the fluctuation-dissipation theorem (3, 4). The molecule is assumed to be in
equilibrium with a radiation bath at temperature T; then in the final step of the
derivation, the limit is taken as T — 0. The fluctuation correlations, which are
defined by

(8. (r.t) 8, (")) = [B. (r,t) - (p. () ] [B. (') - (8. (1)) )
= (P (0. (r',)) = (P (1)) (. (r'1)) , @
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persist at T = 0 due to quantum “zero-point” effects. The fluctuation-dissipation
theorem relates the correlation (8, (r.t) 5p, (r',t)) to the imaginary part of the
nonlocal charge-density susceptibility, x" (r,r';0) .

In this work, the electronic kinetic energy is expressed in terms of the
potential energy and derivatives of the potential energy with respect to nuclear
coordinates, by use of the virial theorem (5-8). Thus, the results are valid for all
bound electronic states. However, the functional derived for E does not obey a
variational principle with respect to (ﬁe (r)) , even though x(r,r';w) is in
principle a functional of (f)e (r)) , as implied by the Hohenberg-Kohn theorem
(9-12).

The derivation (/) of Eq. (1) is related to the treatment of van der Waals
energies within density functional theory, given by Kohn, Meir, and Makarov
(13). However, in Ref. 13, the fluctuation-dissipation theorem was applied only
to the Jong-range exchange-correlation effects, after the short-range exchange-
correlation energy had been separated out. In addition, the exchange-correlation
energy &, as determined by Kohn, Meir, and Makarov (/3) incorporates the dif-
ference between the exact electronic kinetic energy and the kinetic energy of a
system of non-interacting electrons. This accords with the standard definition of
& in density-functional theory, but it differs from the approach used here. In the
current approach, the fluctuation-dissipation theorem is used to determine both
short- and long-range fluctuation correlations (8p, (r.t) 89, (r'st)), and the
virial theorem is applied to the kinetic energy of the system with the full
electron-electron interactions.

The result in Eq. (1) is also related to adiabatic-coupling functionals for the
energy, derived by integration over a coupling constant A that “turns on” the elec-
tron-electron interactions as it varies from 0 to 1 (/4-23). This approach was
introduced in the context of density functional theory by Langreth and Perdew (/4)
and used shortly thereafter by Harris and Griffin (/5) and by Gunnarson and
Lundgyvist (16). In related work, Gorling and Levy (/7) have developed a coupling-
constant perturbation expansion for the correlation energy; and Levy, March, and
Handy have suggested a generalized, two-point adiabatic connection (/9).

Nonlocal Charge-density Susceptibilities

The charge-density susceptibility is a linear response function,; it is nonlocal
because a perturbing potential applied at any point r affects the charge density
throughout the molecule. Quantum mechanically,x(r, r’;) is specified by (2)

1(r.r50) =—{glp. (r)G(w)p, (r')g)

+{glp. (r)G(~w)p. (g} ®
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where G(w) is the resolvent operator,
G(0)=(1-p,)(H, -E, - o) (1-p,), @)

g, denotes the ground-state projection operator | g) { g | , H, is the Hamiltonian
for the unperturbed molecule, and E, is the ground-state energy. For real fre-
quencies w,x(r, r’; ®) gives the functional derivative of the charge density at
point r with respect to a variation of frequency w in the applied potential at r’.

The relation V V': a(r, r’; ©) = —x(r, r’; o) connects x(r, r’; o) to the non-
local polarizability density a(r, r’; ®) (24, 25). In earlier work, it has been
proven that the following properties all depend on a(r, r’; w):

* infrared intensities (26),

* intramolecular dielectric functions (27),

+ Sternheimer electric field shielding tensors (26),

* electronic reorganization terms in vibrational force constants (28, 29),
* softness kernels (30, 31),

* induction energies for interacting molecules (32, 33), and

+ van der Waals dispersion energies (34).

Each of these properties can be expressed equivalently in terms of (r, r’; ®). In
the current work, x(r, r’; ®) contains exchange and correlation contributions to
(Vee); it also contains terms that (in effect) remove the self-energy (35-37) from
the final result for (V).

Static charge-density susceptibilities have been computed ab initio by Li et
al (38). The frequency-dependent susceptibility x(r, r’; ®) can be calculated
within density functional theory, using methods developed by Ando (39), Zang-
will and Soven (40), Gross and Kohn (47), and van Gisbergen, Snijders, and
Baerends (42). In ab initio work, x(r, r’; ®) can be determined by use of time-
dependent perturbation techniques, pseudo-state methods (43-49), quantum
Monte Carlo calculations (50-52), or by explicit construction of the linear
response function in coupled cluster theory (53). Then the imaginary-frequency
susceptibility can be obtained by analytic continuation from the susceptibility at
real frequencies, or by a direct replacement ® — iw, where possible (for
example, in pseudo-state expressions).

Working within the coupling-constant formalism, Hult, Rydberg, Lundqvist,
and Langreth (20) have used applied the fluctuation-dissipation relation for values
of A intermediate between 0 and 1. They have obtained ¢, in terms of a A-
dependent susceptibility, with an integration over the coupling constant. In the
current work, y(r,r’;o) corresponds to the A = 1 value of the susceptibility.

In its underlying physics, the use of susceptibilities to obtain E is related to
the use of a generalized dielectric response function to determine the energy of a
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free electron gas, in the classic work of Noziéres and Pines (54). On the intra-
molecular scale, a nonlocal dielectric function & (r, r’;o) characterizes the
screening of applied potentials; that is, the contribution to the effective potential
Qe at point r due to the application of an external perturbation @, at r’ is given
by & & (I, r’;0) @e(r’;w). The nonlocal dielectric function &\(r, r';w) is
related to y(r,r’;0) by (27)

£y ' (1,F50) = 8(r — 1) + (dme,) ' fdr'[r— ' [ x(r"",r';0) . (5)

The fluctuation-dissipation relation has previously been applied to van der
Waals interactions between pairs of molecules or multiplets by Linder and co-
workers (55-57), Langbein (4), and Hunt (24, 34). The relation yields the disper-
sion energy of large or weakly overlapping molecules (55-57), for which point
multipole representations of the potential break down. Langhoff has treated both
covalent bonding and van der Waals interactions, using electronic
susceptibilities (58). Hunt (34) has used the fluctuation-dissipation relation to
prove Feynman’s “conjecture” (59, 60) that the dispersion force between non-
overlapping atoms in S states stems from the attraction of the nucleus in each
atom to the perturbed charge distribution of the same atom, and to generalize the
result to nonoverlapping molecules of arbitrary symmetry (34). Dispersion
effects on the dipoles (6/, 62) and polarizabilities (63, 64) of interacting
molecules have also been derived within the fluctuation-dissipation framework.

Electronic Potential Energy

The total electronic potential energy of a molecule depends on the averaged
electronic charge density and the nonlocal charge-density susceptibility. The
molecule is assumed to be in equilibrium with a radiation bath at temperature T,
so that the probability distribution over electronic states is determined by the
partition function at T. The electronic potential energy is given exactly by

(V)=Z\Z,Zye [dr(8(r-1))/[r-Ry|
+1/2¢’L 2 Idrdr'(S(r— r )S(r'— rj»/lr-r'|,

1“3

(6

where the sums over i and j run over electrons, while the sum over N runs over
all of the nuclei, with charges {Zy} located at positions {Ry }; € is the charge on
an electron, with e < 0. In this equation, the angular brackets denote thermally
averaged expectation values of the operator or operator products. Thus, (3(r —r,)
8(r" - r))) represents the thermally weighted average of the expectation value of
8(r - r,) 8(r" — r)) in each of the electronic states. When the limit as T — 0is
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taken subsequently, this average becomes the ground-state expectation value of

the operator. (In this case the operator is the product of Dirac delta functions of

the positions of electrons i and j.) No self-energy terms are included in Eq. (6).
In terms of the electronic charge density operator p,_(r),

p.(r)=eZ d(r-r), @)
(V) has the form
(VY=2\Zy [dr(p, (r))/|r-Ry]|
+1/2 jdrdr'(f)e(r)ﬁe(r')>/|r—r'| 8)
-1/2 €%z, Idrdr'(S(r -5)3(r' -r))/|r-r.

The third term in Eq. (8) is the negative of the self-energy ... The self-energy
is divergent (35-37), but the divergence is precisely canceled by an opposing

divergence in the integral containing (p, (r)p, (r')) .
The statistical average of the product {p,(r)p,(r'))is identical to the
single-time correlation (f)e(r,t)ﬁe (r',t)). From Eq. (2), this quantity can be
expressed as the sum of the fluctuation correlation (8;3 (rt) 8p (r',t)) and the

product of the average charge densities, (ﬁe(r,t))(ﬁe(r',t)5, which are
independent of time. Thus

(V) =242y Idr(f)e (r))/lr -Ry|
+1/2 Idrdr'(f)e(r))(ﬁe(r'»/lr—r'|—Z )
+1/4 Idrdr'(Sﬁe (r.t)3p, (r',t) +8p, (r',t)8p, (r.t))/Jr - r.

The second term in Eq. (9) for (V) gives the classical Coulomb energy of a con-
tinuous, static charge distribution with charge density(f)e(r)). The integrand
has a singularity at r = r’, but the singularity is integrable.

By Fourier transformation,

(V)=2\Zy J.dr(gSe (r))/|r-Ry|
+1/2 Idrdr'(ﬁe (NP (F))/[r-r|-Z,,
+1/4 Idrdr' [: ﬁexp[—i(oﬁm’) t]

x(8p, (r,©)8p, (r',0') +8p, (r',@')8p, (r,0))/|r - .

(10)
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The fluctuation-dissipation theorem (3) relates correlations of the spontane-
ous fluctuations in the charge density to the imaginary part of the charge-density
susceptibility, x""(r, r’; ®), where y(r, r’; ) = x'(r, r’; 0) +ix"’(r, r’; ):

1/2 (8{)e (r.0)8p, (r',0')+8p, (r'o')dp, (r,co))

11
=(h/2n)y" (r, r';0)8(o + @) coth (hw/2KT) . ah
Although x(r, r’; ®) is a linear response tensor, Eq. (11) is exact—its use does
not imply that the calculation itself is limited to linear response.

The averaged potential energy (V) includes contributions from fluctuations
in the charge density at all real frequencies. The fluctuation-dissipation theorem
restricts the contributing frequencies to = —w’, but allows for all real ®. The
effects on the energy are contained in the term (V) defined by

(V)ﬂ =(h/4m) Idrdr'on"(r, r’;0) coth (hw/2kT)/|r-r|. (12)

The w-integral in (V) is evaluated analogously to integrals appearing in the van
der Waals interaction energy (4, 24, 55-57), dispersion dipoles (6/, 62), and dis-
persion polarizabilities (63, 64). By itself, ¥ '(r, r’; ®) is not analytic as a func-
tion of w; however, the full susceptibility x(r, r’; ®) is analytic throughout the
upper complex @ half-plane (65); and by parity arguments (4), x"'(r, r’; ®) can
be replaced in the integrand by (i) x(r, r’; ®). Both the imaginary part of the
susceptibility x"'(r, r’; ®) and coth(hw/2kT) are odd in w, while the real part
¥x'(r, r’; ©) is even in . The frequency integral can then be evaluated by com-
plex contour integration, where the contour runs along the real axis from © = —
W to ® = —¢, around an infinitesimal semicircle of radius € to @ = ¢, then along
the real axis to @ = W (4). The contour is closed by a semi-circle of radius W in
the upper half-plane, and the limit is taken as W — co. By causality (4, 65), the
poles of x(r, r’; ) are confined to the lower complex half-plane, so the only
enclosed poles are those of coth(hw/2kT), at ho, = 2,minkT, for each integer n
(4). (The contribution from the pole at n = 0 is multiplied by 1/2.) In the limit as
T — 0, the poles become infinitesimally close, and the sum over the residues at
these poles becomes a Riemann sum for the integral

(V)ﬂ =(n/2n) Idrdr'fx(r,r';im)/[r—r'l ) (13)

While the T — 0 limit has been taken formally, it should be noted that the elec-
tronic fluctuation correlations at room temperature are essentially equivalent to
those at T = 0 for normal, nondegenerate systems. (Thermal photons at room
temperature are generally unable to excite electronic transitions!)
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With the result for (V), from Eq. (13), the potential energy becomes

(V)=2ZuZy jd’<5e (r))/[r-Ry|
+1/2 Idrdr’(ﬁe(r))(f)e(r'))/lr—r'l—zee (14)
+(n/2m) Idrdr' fx(r, rio)/|r-r|.

The self-energy ... is divergent, but there is a canceling divergence in the y
term, so that the net result for (V) is finite.

Electronic Kinetic Energy

A virial theorem (5-8) applied to the electronic coordinates gives the kinetic
energy (T) in terms of (V) and expectation values of the first derivative of V
with respect to nuclear coordinates (66-72). For bound electronic states |f )

2| T|£)= (|2, 5,0V/0n, | £), (15)
where the summation over i and o runs over all electrons i and over the Cartesian
coordinates o = x, y, and z. The Bom-Oppenheimer approximation is used in this
work, so | f ) represents an electronic state that depends parametrically on the
nuclear coordinates. The Coulomb potential for the interaction between charged
particles is a homogeneous function of degree —1, with respect to the coordinates
of all of the interacting particles. By Euler’s theorem,

%1 g OV/0r, +Ey RyqdV/IRye = =V, (16)

with the nuclear coordinates denoted by {Rn}. Equation (16) applies both to the
classical potential function and to V in operator form. Then, from Egs. (15) and (16),

(£ T]£)= =(V2)(F|V|£)-(1/2)ZnoRpa (f]OV/OR | £). (1)

By the Hellmann-Feynman theorem, the expectation value { f| <OV/0Ry, | f) is
the force on nucleus N in the a direction. The force on each nucleus vanishes for
a molecule in its equilibrium nuclear configuration; the force also vanishes for
an isolated atom. In these cases the virial theorem becomes (T) = —(1/2) (V). In
other cases, however, the second term on the right in Eq. (17) is non-vanishing.
With Eq. (17) for (T), it is not necessary to use a gradient expansion (73) or
generalized gradient expansion (74-77) for the kinetic energy. On the other
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hand, the virial theorem applies to the exact wave function, but it does not apply
to approximate wave functions, in general. Hence, the functional for E obtained
by use of Eq. (17) is non-variational.

A general result for E follows from E = (T) + (V), with Eq. (17) for (T) and
Eq. (14) for (V). At this stage, the result differs from Eq. (1), because of its
explicit inclusion of the self-energy.

Self-Energy

Self-energies (35-37) are present in the individual terms in Eq. (14), but not in
the sum of the terms. X, is an explicit self-energy, introduced in order to express
the electron-electron interaction energy in terms of the charge-density operator.
Self-energy effects have not been removed from the static Coulomb term in Eq.
(14), since it contains the full product (p, (r))(p, (")), rather than the product
weighted by (n, — 1)/n.. (In fact, the static Coulomb term is contained in the
functional for a one-electron system.) Both of these self-energy contributions are
canceled precisely by the term containing x(r, r’; i®). To prove this, it is con-
venient to work with a sum-over-states representation of y(r, r’; iw),

x(r, 1’ o) = (2/h)2; <g|ﬁe (r) |J><J|ﬁe () |g>m1s ((’)zm +o’ )—I » (18)

where the prime on the summation indicates that the ground-state has been omit-
ted from the sum over states j. The transition frequency w,, satisfies w,, = (E, -
Eg)/h. In obtaining Eq. (18), it has been assumed that all states are real and that
damping is negligible for frequencies along the imaginary axis.

With Eq. (18) for y(r, r’; iw), the last term on the right hand side in Eq. (14)
can be integrated analytically, to yield

(n/2x) Idrdr’ fx(r, r';io)/|r—r'|
= (1/2) farde's; (glp. (r) |3} (lp. () e}/ Ir ¥

From the closure relation X'/ j ) (j|=1-]|g) ( g |, the sum over the product of
transition matrix elements involving p,(r) and p, (r")separates into two terms,
one containing the ground-state expectation value of p, (r) P, (r') and the other
containing the product of the expectation values of p, (r)and p, (r'), both in the
ground state. These terms can be further separated into those containing self
interactions vs. those containing interactions between distinct electrons. Then

(19)
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(n/2m) Idrdr'fx(r, rio)/|r-r|=
+(e*/2) [ardr' (gf5,2,,8(r-1)8(x' -1,)|g)/|r - |
~(ef2) foear (fz5(e-1) )
x(g|Z,.8(r' -r,)[g)/Ir - ¥
+(€’/2) [ardr's (g|6(r-£)8(xr' - x) |g)/|r -

~(¢*/2) J‘drdr'z, (g|8(r-r,)|e){els(r'-x)|g)/|r-r-

The third term on the right in Eq. (20) cancels the divergent self energy .. in
(V). The final term on the right equals (-1/n.) times the internal Coulomb energy
of the charge distribution (f)e ( r)) [the second term in Eq. (14)]; thus it removes
the self-interactions from the static Coulomb energy.

For precise cancellation of the self energy, the closure relation must be
satisfied by the expansion basis. Thus for numerical work, a different approach
is needed to remove the canceling divergences in the expression for (V). If an
infinitesimal region around r = r’ is removed from the range of integration, at
least one of the two delta functions 8(r — r;) and 8(r" — r;) must vanish, for any
value of r,. Consequently Y., — 0 and the third term in Eq. (20) also vanishes.
Equation (1) for E follows immediately, with the deleted region denoted by the
subscript —¢ on the range of integration. Deletion of the infinitesimal region has
a negligible effect on the static Coulomb energy and a negligible effect on the
fourth term in Eq. (20). This technique is analogous to the use of a “cut-out”
propagator in dielectric theory (79, 80), to exclude self-polarization
contributions to the dielectric function.

(20)

Summary

Equation (1) gives the final result for the electronic energy as a functional
of the electronic charge density and the charge-density susceptibility. This result
follows immediately from Eqs. (14), (17), and deletion of an infinitesimal region
around r = r’ from the range of integration. Although the fluctuation-dissipation
theorem has been used in the derivation of Eq. (1) for E, the same result follows
by analytic integration of x(r, r’; i), using Eq. (18). Within the non-relativistic
Bomn-Oppenheimer approximation, the functional is exact. The functional is
nonlocal because it contains x(r, r’; io). It differs from the nonlocal density
functionals in use for computations (23, 71, 78, 81-94), including the average-
density (95) and weighted-density approximations (96-100).

In Electron Correlation Methodology; Wilson, A., el al.;
ACS Symposium Series; American Chemical Society: Washington, DC, 2007.



Downloaded by TECHNISCHE UNIV MUENCHEN on October 23, 2009 | http://pubs.acs.org

Publication Date: March 13, 2007 | doi: 10.1021/bk-2007-0958.ch010

179

This approach gives a compact expression for the electronic energy, in
terms of the molecular properties; in this form, the result is useful for analytical
work. The result may also be useful for determining contributions to the
correlation energy from widely separated regions within a single molecule, or in
interacting molecules, complementing the adiabatic coupling (/4-23, 101-105)
and “seamless” density functional (/06-108) approaches. Earlier expressions for
the van der Waals energy of large, nonoverlapping molecules (24, 34, 55-58)
required integration over four spatial variables, vs. the integrations over two
variables, r and r’, in Eq. (1).

Use of Equation (1) in numerical work requires a means of generating x(r,
r’; iw) as well as the average charge density. Direct variational methods are not
applicable to the expression for E itself, due to use of the virial theorem. How-
ever, both p (r) and x(r, r’; iw) (39-42, 109-112) are computable with density-
functional methods, thus permitting individual computations of E from Eq. (1)
and investigations of the effects of various approximations for x(r, r’; i®).
Within coupled-cluster theory, y(r, r’; iw) can be generated directly (53) from
the definition in Eq. (3); then Eq. (1) yields the coupled-cluster energy in a new
form, as an expectation value.
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Chapter 11

The Protonation Site of Aniline Revisited: A ‘Torture
Test’ for Electron Correlation Methods
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IL-76100 Rehovot, Israel
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The site of protonation of aniline is revisited using many high
level ab initio wave function methodologies and several DFT
exchange-correlation functionals. The results indicate that the
prediction of the protonation site and the relative energy of the
N-, o-, and p-protonated species depend critically on the
method and basis set used. At the highest level of theory
(W1c), aniline is predicted to be a nitrogen base with a proton
affinity of 211.0 kcal/mol, in very good agreement with
experiment, the p- and o-protonated forms lying respectively

- 1.1 and 6.2 kcal/mol higher in energy. Despite yielding errors
of less than 5 kcal/mol in all cases, all density functional
methods considered wrongly predict protonation at the para
site.
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Introduction

It is a well established fact that the preferred site of protonation of aniline in
solution is the nitrogen atom, due to the higher stabilization upon solvatation of
the N-protonated species with respect to the ring protonated ion (/). In the gas
phase however, the situation is less clear, and the preferred site of protonation
has been the subject of many experimental and theoretical studies. Based on
proton transfer equilibria at 600 K and upon correlation of the proton affinities

with cr; constants for p-substituents, Lau and Kebarle concluded that the

preferred site of protonation is on the aromatic ring (2). This was confirmed by
mass spectroscopic studies involving the collision-activated dissociation of
partially deuterated aniline ions, suggesting preferential ring protonation under
chemical ionization conditions (3-5). From the correlation of the proton
affinities of a series of substituted anilines with N is ionization energies, Pollack
et al. concluded that the protonation in aniline occurs on the N atom (6).

[ (] 0
NH, NH, NH,
o O
H H
1a 1b

1c

Karpas et al. used the ion mobility/mass spectroscopy method to show that
under atmospheric pressure, protonation of the aniline yields two isomeric ions,
a N-protonated and a ring protonated species. Assuming that the N-protonated
species is the least mobile of the two, they concluded that protonation occurs on
the nitrogen (7). Smith et al. showed that the kinetically favored site of
protonation is N (8). The structure of the protonated species was studied by Nold
and Wesdemiotis using neutralization-reionization mass spectrometry. Fast atom
bombardment ionization was shown to yield predominantly the N-protonated
isomer, whereas chemical ionization with a variety of reagents yielded the ring
protonated species (9). Minimal basis set Hartree-Fock and semi-empirical
calculations have shown that aniline is a nitrogen base, the energy difference
between the N and carbon protonated forms being 1-3 kcal/mol (6,10). Sjoberg,
Murray, Brinck and Politzer used the average local ionization energy and
showed that the para carbon is the most reactive toward electrophiles (/7). The
absolute minimum in the molecular electrostatic potential of the molecule
however is found near the nitrogen atom as was concluded by Ritchie (/2).
Based on MP2 computations on HF optimized structures, Hillebrand et al.
concluded that aniline is protonated on the nitrogen atom (/3). Roy, De Proft
and Geerlings used DFT based reactivity indices, such as the relative
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nucleophilicity, to study the site of protonation of aniline and a series of m- and
p-substituted anilines (14). They also concluded that the nitrogen atom is the site
of protonation. These systems were also revisited by Roy et al. in a study
addressing the non-negativity of Fukui functions. It was confirmed by
Fuentealba, Perez and Contreras that the electrophilic Fukui function indeed
predicted the correct protonation site (/5). In contrast, Russo et al. concluded
that the orbital Fukui function indices, associated with the hardest orbitals, point
to the para carbon as the preferred site of protonation (/6). Moreover, they
performed proton affinity calculations at the B3LYP, BP, MP4 and G2(MP2)
levels of theory. All methods indeed predict that the nitrogen and para carbon of
the aromatic ring are the thermodynamic most favorable protonation sites.
However, the DFT methods and MP4 point to the p-carbon as the preferred
protonation site, whereas G2(MP2) yields N-protonation: the difference with the
p-protonated form is only 0.7 kcal/mol. At the G3(MP2) level, N-protonation is
favored by 1.2 kcal/mol over ring protonation; this energy difference increases
to 10.1 kcal/mol when applying the IPCM continuum method with an € value of
78.3 (water) (/7). Water clusters of protonated substituted anilines generated by
an electrospray ion source were investigated using a Fourier transform ion
cyclotron resonance mass spectrometer by Lee, Cox, Goddard III and
Beauchamp (/8). From these studies, it was concluded that the preferred site of
protonation in the nitrogen atom.

From all this theoretical and experimental work, it can be concluded that the
energy difference between the N-protonated form la and the p-protonated
species Ib is very small. (The o-protonated structure lc lies somewhat higher in
energy.) Moreover, the relative stability of the two species changes when using
different calculation levels and can even change when the basis set is altered for
a given methodology. In this contribution, the definitive relative stability of the
different protonated aniline species is theoretically established and the
performance of the different methods is critically investigated.

Methods

All calculations were carried out on a Compaq GS160 minisupercomputer
at Brussels Free University and on a Linux farm consisting of dual-CPU 2GHz
and 2.4Ghz Pentium Xeon workstations at the Weizmann Institute of Science.

The coupled cluster calculations involved in Wlc theory were carried out
using MOLPRO 2002.3. (19) (For the open-shell calculations on the constituent
atoms, the definition of the open-shell CCSD and CCSD(T) energies in Ref. (20)
was employed.) The density functional calculations were carried out using a
modified version of Gaussian 98 rev. All (21), as were the Gn theory (22-24)
and CBS-n (25) calculations.
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Aside from the well-known LDA (local density approximation (26, 27)),
BLYP (Becke-Lee-Yang-Parr (28, 29)) and B3LYP (29, 30) functionals, we
considered the more recent B97-1 functional (which is a reparametrization (3/)
of Becke’s 1997 hybrid functional), the B97-2 functional (32) (a variation of
B97-1 which includes a kinetic energy density term), and the HCTH-407 (33)
functional of Boese and Handy (arguably the best GGA functional in existence
at the time of writing). The rationale behind the Wilc (Weizmann-1 cheap)
approach is extensively discussed elsewhere. (34,35) For the sake of self-
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containedness of the paper, we briefly summarize the steps involved for the
specific system discussed here:

the geometry is optimized at the B3LYP level with a Dunning correlation
consistent (36) cc-pVTZ basis set;

the zero-point energy was obtained from B3LYP/cc-pVTZ harmonic
frequencies scaled by 0.985, and rigid rotor-harmonic oscillator (RRHO)
thermal corrections were derived from the B3LYP/cc-pVTZ rotational
constants and harmonic frequencies;

CCSD(T)/cc-pVnZ+aug(N) (n=D,T) calculations are carried out using a
conventional (disk-based) algorithm, where aug(N) stands for the use of
the diffuse function augmented aug-cc-pVnZ basis set on the nitrogen
atom;

an integral-direct (37) CCSD/cc-pVQZ+aug(N) is carried out;

the SCF energy is extrapolated to the infinite basis limit using E, = E, +
(EL — EL)/((L/L-1)"~1), where o = 5 and L = {3,4} for {VTZ,VQZ}
respectively;

the CCSD valence correlation energy is extrapolated using the same
expression, but using a = 3.22;

the (T) contribution is extrapolated in the same manner but using L =
{2,3} for {VDZ,VTZ};

the inner-shell correlation and scalar relativistic contributions are
obtained using the Martin-Sundermann-Fast-Truhlar (MSFT) (38) bond-
additivity model

The ‘ultrafine’ pruned (99,590) integration grid was used in all DFT
calculations.
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Table I: Computed total atomization energy at 0 K of aniline and proton
affinities at 298 K for protonation at different sites. Proton affinities for N-
protonation of aniline. All values are given in kcal/mol.

TAE, PA;os PA,os PAj;s N-prot. paravs.
N-prot.”  para ortho paravs. ortho

Expt. (39) 1467.7£0.7 210.9

Wic 1468.7 211.0 2099 2049 1.1 5.1
Gl 1462.7 210.8 2092 2043 1.6 49
G2 1464.0 2114 2100 205.1 1.4 49
G2MP2 1463.0 211.5 209.9  205.0 1.6 49
G3 1467.0 2114 209.8 2048 1.6 5.0
G3B3 1467.3 2114 209.9 204.8 1.5 5.1
CBS-Q 1468.8 210.5 207.9 2042 2.7 3.6
CBS-QB3 1466.2 2114 2083 2032 3.1 5.1
SVWN3 1738.2 203.1 204.3 199.6 -1.2 4.7
BLYP 1459.7 209.9 212.5 208.5 2.7 4.1
B3LYP 1461.2 211.0 212.8 208.3 -1.8 4.5
B97-1 1468.7 212.5 214.0 209.5 -1.5 44
B97-2 1472.2 213.7 215.0 210.6 -14 4.5
HCTH/407 1465.0 212.6 214.9 210.8 2.3 4.1
HF/VDZ+ 215.1 219.8 214.1 4.8 5.8
HF/VTZ+ 215.6 220.7 214.7 -5.1 5.9
HF/VQZ+ 2154  220.5 2146 -5.2 59
HF limit 215.3 2205 2145 -5.2 59
CCSD/VDZ+ 2139 2143  209.1 -0.5 5.3
CCSD/VTZ+ 2132 2135  208.0 -04 5.5
CCSD/VQZ+ 2126 2129 2074 -0.2 5.5
CCSD limit 2123 2125 207.0 -0.1 5.5
MP2/VTZ+ 210.0 203.8 198.8 6.2 5.0
CCSD/VTZ+ 213.2 213.5 208.0 -0.4 5.5
CCSD(T)/VTZ+ 212.1 2114 206.3 0.7 5.1
CCSD[T)/VTZ+ 211.9 211.7 206.6 0.3 5.1

? includes correction for internal rotation of the — NH; group (RT/2, +0.3

kcal/mol)
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Results and Discussion

All relevant results are gathered in Table I.

The relative energies apparently exhibit a rather weak basis set dependence:
the equilibrium between the N- and p-protonated forms is driven by electron
correlation, while the ortho-para equilibrium is apparently quite well reproduced
even at the HartreeFock level. We may safely argue that the Wlc results are
converged with respect to the basis set.

The Wic total atomization energy at 0 K of aniline, 1468.7 kcal/mol, is in
satisfying agreement with the value obtained from heats of formation in the
NIST WebBook (39), 1467.7+0.7 kcal/mol. (Most of the uncertainty derives
from the heat of vaporization of graphite.) The various contributions to this
result are (in kcal/mol): SCF limit 1144.4, valence CCSD correlation energy
limit 359.0, connected triple excitations 31.7, inner shell correlation 7.6, scalar
relativistic effects -1.2, atomic spin-orbit coupling -0.5 kcal/mol. Extrapolations
account for 0.6, 12.1, and 2.5 kcal/mol, respectively, out of the three first
contributions.

As the MSFT (38) additivity model predicts only very weak core correlation
and scalar relativistic contributions to the proton affinity, we have not attempted
their explicit (and very expensive) calculation.

The B3LYP B97-n, and HCTH/407 compare quite well to experiment and
W c: it should be recalled that all four functionals were wholly or partially fitted
to atomization energies. The B97-1 result in fact is identical to Wlc, while the
‘pure DFT° HCTH/407 functional does surprisingly well.

The relative energies of the three protonated species are well reproduced by
all methods from the Gn family. This can largely be explained by (a) the fact
that all these methods involved CCSD(T) or QCISD(T) steps (and apparently
triple excitations are quite important here); (b) the relatively rapid basis set
convergence noted above, which means that it is not really an issue that the
CCSD(T) and QCISD(T) steps are carried out in relatively small basis sets.
CBS-QB3 likewise reproduces the relative energetics quite well.

As has been pointed out in the past (e.g. concerning the linear-cyclic
equilibrium in C¢and C, carbon clusters (40)), Hartree-Fock underestimates the
resonance stabilization of aromatic relative to non-aromatic systems (in the case
at hand, between the N- and p-protonated isomers) and MP2 overcorrects. The
structures are found to be nearly isoenergetic at the CCSD level; inclusion of
connected triple excitations favors the N-protonated ion. The direction of the
effect of connected quadruples is somewhat unclear, and a CCSD(TQ) or
CCSDT(Q) calculation impossible on systems this size, but the contribution will
anyhow be much smaller in absolute magnitude than that of connected triple
excitations, particularly for systems like these which are dominated by a single
reference determinant. We may therefore infer that at the full CI limit, the N-
protonated species will be slightly more stable than its p-protonated counterpart.
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On the other hand, the PAs at the para and ortho positions are manifestly
more sensitive to the electron correlation treatment than the PA at the nitrogen.
From the point of view of the 7; diagnostic (a measure for the importance of
nondynamical correlation), aniline (7;=0.0113) and N-anilinium (7;=0.0096) are
very similar (and basically purely single-reference), while the p- and o-
protonated species exhibit very mild multireference character (0.0149 and
0.0157, respectively). Since protonation at these sites thus involves a noticeable
change in 7}, the PA is expected to be more sensitive to the correlation method.

Let us now turn to the density functional methods. All of them correctly
predict the para-ortho ordering, but considering that this is the case even for a
Hartree-Fock treatment this is a somewhat hollow victory. Without exception,
all functionals wrongly predict p-protonation. Arguably, this small energy
difference falls within the error margin of any type of calibration for (semi-)
‘empirical’ DFT functionals.

In an attempt at finding the ‘root cause’ of this failure of DFT, we first
estimate the conjugation stabilization of the cations by means of isodesmic
reaction energies at the CCSD(T)/cc-pVTZ+aug(N) and B3LYP/cc-
pVTZ+aug(N) levels. (The same qualitative trends are exhibited by other DFT
methods.) The isodesmic reactions

N-prot +7 CH;— CH;NH;" +3 C,H,+3 C,He (¢))
p-prot + 7 CHy—+ CHgNH2+ +2 C2H4 +4 C2H6 (2)

have stabilization energies of 65.9 and 67.0 kcal/mol at the CCSD(T) level of
theory, respectively. This result is somewhat counterintuitive, since one might
expect the conjugation energy of the (aromatic) N-protonated aniline to be the
greater of the two. Still, B3LYP overestimates reaction (1) by 3.2 and (2) by 3.8
kcal/mol, hence favoring the p-protonated aniline by an additional 0.6 kcal/mol.
Nevertheless, this does not fully account for the 2.5 kcal/mol discrepancy
between B3LYP and CCSD(T) for the energy difference between N- and p-
protonated aniline.

A second potential source of error may be overstabilization of the
‘tautomeric’ form of aniline, 2,5-cyclohexadien-1-imine. At the CCSD(T)/cc-
pVTZ+aug(N) level, the energy difference is 23.9 kcal/mol. This, incidentally,
implies a very high proton affinity for the tautomeric form of 235.3 kcal/mol.
However, while B3LYP overestimates the tautomerization energy by 3.5
kcal/mol compared to CCSD(T), it does so even more (4.9 kcal/mol) for the
imine proton affinity, which is enough to tip the scales to the wrong protonation
site. Considering the proton affinities of some small model compounds at the
B3LYP/cc-pVTZ+aug(N) and CCSD(T)/cc-pVTZ+aug(N) levels, we find an
overestimate by B3LYP of 1.7 kcal/mol for CH,NH, and 3.1 kcal/mol for vinyl
imine. The ‘Schiff base tautomer’ of aniline has two conjugated branches similar
to vinyl imine, and exhibits an even larger overestimate. (Similar findings are
seen with other exchange-correlation functionals.)
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Overall, we see that imperfect cancellation between two (apparently
systematic) errors leads to DFT consistently predicting the wrong protonation site.

Conclusions

In this contribution, the protonation site of aniline has been revisited. From
our results, it can be inferred that at the full CI limit, the N-protonated species
will be slightly more stable than the p-protonated one. For this problem, Wlc
theory was found to be converged in basis set and pointed to an N-protonation of
the base, the p- and o-protonated forms lying respectively 1.1 and 6.2 kcal/mol
higher in energy. The resonance stabilization of N-protonated relative to the p-
protonated species is underestimated by Hartree-Fock theory, whereas MP2
overestimates it. At the CCSD level both forms are nearly isoenergetic, the
inclusion of connected triples favoring protonation on the nitrogen. Furthermore,
considering the 7, diagnostic, aniline and the N-protonated conjugate acid are
classified as having essentially single-reference character, while the p-
protonated and o-protonated forms exhibit very mild multireference character.
Finally, all the DFT methods considered severely overestimate the proton
affinity of 2,5-cyclohexadien-1-imine at nitrogen, hence erroneously predicting
protonation of aniline at the para site rather than on the nitrogen.
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Chapter 12

Equilibrium Structure of the Silicon Trimer

John F. Stanton

Institute for Theoretical Chemistry, Departments of Chemistry and
Biochemistry, The University of Texas at Austin, Austin, TX 78712
email: jfstanton@mail.utexas.edu

Recent microwave data for the potential interstellar molecule
Si; is used together with high-level coupled-cluster
calculations to extract an accurate equilibrium structure.
Observed rotational constants for several isotopomers have
been corrected for effects of vibration-rotation interaction;
subsequent least-squares refinements of structural parameters
provide the equilibrium structure. This combined
experimental-theoretical approach yields the following
parameters for this C,, molecule: r(SiSi) = 2.173+0.002A and
0.(SiSiSi) = 78.1+0.2°.

In addition to its undeniable importance in various areas of materials
science, silicon is one of the most abundant elements in the universe.
Consequently, molecules containing one or more silicon atoms are expected to
be present in the interstellar medium. Indeed, the blue-green emission of SiC,
from N-type stars and comets was first observed in 1926 (/,2). Laboratory
observation allowed these features to be assigned to this interesting molecular
species three decades later (3). SiC, has since been found in the interstellar gas
by radioastronomy (4), and is a popular subject in ab initio investigations due to
its extreme nonrigidity (5). To date, nine silicon-containing molecules have been
detected in the interstellar medium (6), a list that should continue to grow.
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Laboratory study of discharge products has proven to be an extremely
useful means for detecting potential interstellar molecules (7). As an illustrative
example, two isomers of the cyclic SiC; molecule are generated in a silane-
diacetylene discharge, and the respective microwave spectra were recorded in
1999 (8,9). The rotational constants were then used to guide an astronomical
search, and the more stable of the two isomers was found (70) immediately in
the evolved carbon star IRC + 10216. A later high-level ab initio study
established an accurate thermodynamic energy difference between the cyclic
forms as well as precise equilibrium geometries for both (/7).

The purpose of this report is to demonstrate the ease with which highly
accurate equilibrium structures can be determined by combining laboratory
microwave data with the results of ab initio calculations. In this procedure, the
effects of vibration-rotation interaction are calculated and removed from the
observed rotational constants, 4y, By and C,. The resulting values correspond to
approximate rigid-rotor constants 4., B, and C. and are thus inversely
proportional to the principal moments of inertia. A subsequent least-squares
fitting of the independent structural parameters to the corrected constants yields
the equilibrium structure, provided that the number of available and independent
rotational constants is greater than or equal to the number of internal degrees of
freedom in the totally symmetric subspace (which is the same as the number of
totally symmetric vibrational modes).

Determination of the equilibrium structure for a polyatomic molecule by
means of the method outlined in the preceding paragraph was apparently first
carried out by Meyer, Pulay and Boggs a quarter-century ago (/2). The same
approach has been used by Allen and collaborators in the last decade (13, /4). In
recent years, the availability of analytic second derivative methods at highly
correlated levels of theory (/5) has made the determination of accurate
anharmonic force fields for polyatomic molecules a relatively routine procedure.
When the goal is to calculate vibration-rotation contributions to rotational
constants, it is simpler still since only cubic force constants of the type ¢,, are
needed (/6), where i is a totally symmetric normal coordinate. These are
conveniently evaluated by double-sided numerical differentiation of analytic
second derivatives along totally symmetric displacements. Hence, for a
molecule with » internal degrees of freedom, 2n analytic second derivative cal-
culations are needed in addition to that carried out at the undisplaced geometry'.
The latter calculation provides the harmonic force field, which is needed for
some of the contributions to the vibration-rotation interaction Hamiltonian.

The vibration-rotation contribution to rotational constants is given (through

lowest order) by the interaction constants o’ via

! However, if isotopomers are considered in which the point group symmetry is lowered
by substitution it is necessary to calculate additional cubic constants. Isotopomers III and
V in the present work are of this type, so the full cubic force field was evaluated.
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1
B, =Be—2(n, +E)af’

with similar expressions for 4 and C. The sum runs over all vibrational modes
and n, is the vibrational quantum number. The constants a are determined
entirely by the structure, quadratic and cubic force fields of the molecule in
question (/6). In principle, the interaction constants can be determined from
high-resolution vibrational spectroscopy by measuring the vibrational state
dependence of the rotational constants. However, this is rarely possible to
accomplish for a polyatomic molecule; even then the procedure is often plagued
by Coriolis resonances that arise when vibrational states of the molecule are
nearly degenerate. Here, theory offers an advantage because it is the sum of the
interaction constants for a particular axis rather than their individual values that
is the relevant quantity. Since the difference between B, and B, (or the
associated differences for the other two axes) is a property of the ground state —
which is not generally quasidegenerate — it should not be affected by the
resonance interactions that plague the individual constants. Indeed, one can
show that the sum of the constants can be written in a form in which there are no
denominators involving vibrational frequencies (/4). Hence, the use of theory
offers tremendous advantages since it does not require rotationally-resolved
spectroscopic analysis of all fundamental vibrational transitions and the Coriolis
resonance problem is avoided. For these reasons, the combination of
experimental rotational constants and high-level calculations of Ao — A,, Bo— B.
and Co — C, appears to be the most reliable means for determining equilibrium
(r) structures of polyatomic molecules. Reviewed elsewhere (/7), this
procedure has been employed in recent years to determine r, structures of the
prototype organic molecules benzene (/8) and cyclopropane (19), as well as a
number of other systems.

In this paper, the mixed experimental-theoretical approach for determining
r structures is applied to the silicon trimer. For reasons stated in the opening
paragraph, this molecule is of obvious astrophysical interest. Furthermore, its
microwave spectrum has recently been recorded (20). This should serve to direct
astronomical searches for Si;, although the dipole moment (calculated in the
present research as ca. 0.4 D) suggests that detection might be difficult. Previous
quantum chemical studies of Si; have revealed that there are nearly degenerate
isomers (27): a singlet with C,, symmetry and a triplet with the structure of an
equilateral triangle (D;,). The energy difference between these forms is small,
but the singlet is predicted to lie below the triplet. The electronic spectrum of Sis
has been recorded in matrix isolation (22) and was interpreted in terms of an
isoceles triangle (C,) structure, a finding that agrees with the recently recorded
microwave spectrum., :

Harmonic and cubic force fields of Si; were calculated using coupled-
cluster (CC) theory (23) and a correlation-consistent basis set. Specifically, the
CC singles and doubles (CCSD) method (24) was used in conjunction with the
cc-pVTZ basis set (25) developed by Dunning and co-workers. The force
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constants were calculated by the methods described earlier and elaborated in
Ref. (26) using a local version of the ACES Il program system (27). The
resulting values, together with additional parameters needed to evaluate the
rigid-rotor rotational constants 4., B, and C,, are collected in Table I.

Five isotopomers of Si; were studied in Ref. (20), and are labeled as
follows: 28i-2Si-2Si (I); 2Si-?Si-2*Si (II); 2Si-*Si-*Si (III); 2Si-*°Si-?*Si
(IV); Si-8Si-*Si (V). Rotational constants for each (both corrected and
uncorrected for vibration-rotation interaction) can be found towards the bottom
of Table 1. Structures obtained by various refinement procedures are collected in
Table II. Two distinct fitting procedures were used. In the first, the structures
were refined against all three rotational constants 4, B and C while only 4 and C
were used in the second procedure. Since truly planar nuclear configurations
have only two independent moments of inertia (A = I, — I, — I. = 0), use of B (or
C) involves a redundancy if the other is included. In practice, however,
vibration-rotation effects spoil the exact proportionality between rotational
constants and reciprocal moments of inertia and values of A calculated from
effective moments of inertia determined from the 4y, Bo and C, constants do not
vanish. Hence refining effective (r,) structures against all three is not without
merit. A, is called the inertial defect and amounts to ca. 0.4 amu A? for all five
isotopomers. After correcting by the calculated vibration-rotation interactions,
the inertial defect is reduced by an order of magnitude in all cases.

Since Si; has only two independent structural parameters — the Si-Si bond
length and tile Si-Si-Si bond angle — the set of rotational constants for each
isotopomer is sufficient to determine a structure, and this has been carried out
for isotopomers I-V. Two things should he noted. First, distances and angles
inferred from the independent constants 4 and C differ from those obtained via
least-squares adjustment to all three uncorrected constants by roughly 0.02A and
0.1°. However, these differences are reduced by an order of magnitude when
vibration-rotation corrections are applied. The remaining difference is of course
due to the fact that there is a residual inertial defect of ca. 0.03 amu A? for the
isotopomers'; inferred parameters would be identical for a precisely zero A when
the third constant is rigorously redundant. Second, the structural parameters
determined for all of the isotopomers are in excellent agreement, suggesting that
there are no systematic problems with any of the experimental rotational

! In a previous study of cyclic SiC,, a residual inertial defect of only slightly smaller
magnitude was found, despite the fact that an extremely high level of calculation
(surpassing that in the present study) was used to determine the vibration-rotation
interaction contributions to the rotational constants. This was subsequently traced to the
so-called electronic contribution, which arises from a breakdown of the assumption that
the atoms can be treated as point masses at the nuclear positions. Corrections for this
somewhat exotic effect were carried out in that work and reduced the inertial defect from
about 0.20 to less than 0.003 amu A2. However, the associated change in the rotational
constants had an entirely negligible effect on the inferred structural parameters. Hence,
this issue is not considered further in this work.
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Table 1: Harmonic frequencies and cubic force constants (in the reduced normal coordinate
representation) for the normal isotopomer (I) of Si; (top). Measured rotational constants and
effective equilibrium values (in MHz) for the five isotopomers described in the text (bottom).

Harmonic Frequencies (cm™)

Cubic force constants (cm™)

a\(ay) 578 din 106
wxa) 548 d112 4
ws(by) 203 "2 1
$222 59
$133 106
$233 106
Isomer Uncorrected Constants (MHz) Corrected Constants (MHz)
A B; C, A, B, C.
I 9506.1 4809.3 3185.9 9514.2 4817.5 3197.3
11 9287.9 4809.2 3161.0 9295.4 4817.5 3172.2
I 9452.2 4725.5 3143.0 9460.4 4733.5 3154.1
v 9084.7 4809.1 3137.0 9091 7 4817.5 3148.1
\Y% 9403.7 4645.8 3102.2 9412.0 4653.5 3113.1
“From Reference (20).
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Table II: Refined structural parameters for Si;, based on the
rotational constants in Table 1. For the set of five isotopomers,
maximum least-squares residuals for the fits to all three constants
and just A and C are 6.38 and 0.70 MHz, respectively, for the
uncorrected constants. Corresponding values obtained in fits to the
effective equilibrium constants are 0.74 and 0.07 MHz.

Uncorrected Corrected

Fitto Fit to
Isotopomer Ao, By, Co A0 Co A. B, C, 4. C.

Refined Bond Length (Angstroms)

I 2.1748 2.1761 2.1732 2.1734
II 2.1748 2.1761 2.1733 2.1733
I 2.1748 2.1760 2.1732 2.1734
v 2.1747 2.1760 2.1732 2.1734
\% 2.1748 2.1760 2.1732 2.1734
I-v 2.1748 2.1760 2.1732 2.1734
Refined Bond Angle (degrees)
I 78.15 78.23 78.11 78.12
11 78.15 78.24 78.11 78.12
I 78.15 78.23 78.11 78.12
v 78.15 78.24 78.11 78.12
\% 78.14 78.23 78.11 78.12
I-v 78.15 78.23 78.11 78.12

constants. Because of the second consideration, the r, and r, structures obtained
by least-squares fits to all of the rotational constants are essentially the same as
those determined for the individual isotopomers.

The results of this study are somewhat atypical in the sense that the inferred
r. and r, structures of Si; are nearly the same. This is a somewhat fortuitous
circumstance, which cannot be attributed entirely to the fact that Si; appears to
be only weakly anharmonic (see cubic constants in Table I), since it has a
relatively low-frequency bending mode that is potentially problematic.
Nonetheless, it can be stated with some certainty that the 7, structure obtained in
the present research is accurate to within 0.002A and 0.2°. Hence, this structure
can be used as a reference for benchmarking quantum chemical methods
intended for high accuracy calculations on silicon clusters, as well as for
comparison with structures of other silicon-containing molecules.

In Electron Correlation Methodology; Wilson, A., el al.;
ACS Symposium Series; American Chemical Society: Washington, DC, 2007.



Publication Date: March 13, 2007 | doi: 10.1021/bk-2007-0958.ch012

Downloaded by TECHNISCHE UNIV MUENCHEN on October 23, 2009 | http://pubs.acs.org

199

Acknowledgement

This work was supported by the Robert A. Welch and National Science

Foundations. M.C. McCarthy and P. Thaddeus (Harvard) are thanked for a
preprint of Ref. (20).

BN~

®

10.

11
12.
13.

14.

15.
16.

17.
18.
19.
20.
21.

References

P.W. Merrill Publ. Astron. Soc. Pac. 38, 175 (1926).

R.F. Sanford Publ. Astron. Soc. Pac. 38, 177 (1926).

B. Kleman Astrophys. J. 123, 162 (1956).

P. Thaddeus, S.E. Cummins and R.A. Linke Astrophys. J. Lett. 283, LA45
(1984).

S.C. Ross, T.J. Butenhoff, E.A. Rohlfing and C.M. Rohlfing J. Chem. Phys.
100, 4110 (1994), and references therein.

See: http://cfa-www.harvard.edw/cfa/mmw/mmwlab/ismmoleculesorganic.html
for a list of interstellar species detected to date.

P. Thaddeus and M.C. McCarthy Spectrochim. Acta A57, 757 (2001).

M.C. McCarthy, A.J. Apponi and P. Thaddeus J. Chem. Phys. 110, 10645
(1999); A.J. Apponi, MC. McCarthy, C.A. Gottlieb and P. Thaddeus J.
Chem. Phys. 111, 3911 (1999).

M.C. McCarthy, A.J. Apponi and P. Thaddeus J. Chem. Phys. 111, 7175
(1999).

A.J. Apponi, M.C. McCarthy, C.A. Gottlieb and P. Thaddeus Astrophys. J.
516, L103 (1999).

J.F. Stanton, J. Gauss and O. Christiansen J. Chem. Phys. 114, 2993 (2001).
P. Pulay, W. Meyer and J.E. Boggs J. Chem. Phys. 68, 5077 (1978).

A.L.L. East, W.D. Allen and S.J. Klippenstein J. Chem. Phys. 102, 8506
(1995).

W.D. Allen, ALL. East and A.G. Csaszar, in Structures and
Conformations of Nonrigid Molecules, edited by J. Laane, M. Dakkouri, B.
va der Vecken and H. Oberhammer (Kluwer, Dordrecht, 1993), p. 343;
A.L.L. East, C.S. Johnson and W.D. Allen J Chem. Phys. 98, 1299 (1993).
J. Gauss and J.F. Stanton Chem. Phys. Lett. 276, 70 (1997).

LM. Mills, in Modern Spectroscopy: Modern Research edited by K.N. Rao
and C.W. Matthews (Academic Press, New York, 1972), pp. 115-140.

J.F. Stanton and J. Gauss /nt. Rev. Phys. Chem. 19, 61(2000).

J. Gauss and J.F. Stanton J. Phys. Chem. A104, 2865 (2000).

J. Gauss, D. Cremer and J.F. Stanton J. Phys. Chem. A104, 1319 (2000).
M.C. McCarthy and P. Thaddeus Astrophys. J., submitted.

R. Foumnier, S.B. Sinnott and A.E. DePristo J. Chem. Phys. 97, 4149
(1992); D.A. Dixon and J.L. Gole Chem. Phys. Lett. 188, 560 (1992); R.S.
Grey and H.F. Schaefer Chem. Phys. Lett. 119, 111 (1985).

In Electron Correlation Methodology; Wilson, A., el al.;
ACS Symposium Series; American Chemical Society: Washington, DC, 2007.


http://cfa-www.harvard.edu/cfa/mmw/mmwlab/ismmoleculesorganic.html

Downloaded by TECHNISCHE UNIV MUENCHEN on October 23, 2009 | http://pubs.acs.org

Publication Date: March 13, 2007 | doi: 10.1021/bk-2007-0958.ch012

20

22

23.
24,
25.
26.
27.

0

. J. Fulara, P. Freivogel, M. Grutter and J.P. Maier J. Phys. Chem. 100,
18042 (1996).

For a recent review, see:

G.D. Purvis and R.J. Bartlett J. Chem. Phys. 76, 1910 (1982).

D.E. Woon and T.H. Dunning J. Chem. Phys. 98, 1358 (1993).

J.F. Stanton, C.L. Lopreore and J. Gauss J. Chem. Phys. 108, 7190 (1998).
J.F. Stanton, J. Gauss, J.D. Watts, W.J. Lauderdale and R.J. Bartlett /nt. J.
Quantum Chem. S26, 879 (1992).

In Electron Correlation Methodology; Wilson, A., el al.;
ACS Symposium Series; American Chemical Society: Washington, DC, 2007.



Publication Date: March 13, 2007 | doi: 10.1021/bk-2007-0958.ix001

Downloaded by TECHNISCHE UNIV MUENCHEN on October 23, 2009 | http://pubs.acs.org

Author Index

Abrams, Micah L., 75 Martin, Jan M. L., 183
Boese, A. Daniel, 183 O’Neill, Darragh P., 27
Bytautas, Laimutis, 103 Perdew, John P., 13
De Proft, Frank, 183 Peterson, Kirk A., 125
Dutta, Antara, 75 Piecuch, Piotr, 37
Fan, Peng-Dong, 37 Pimienta, Ian S. O., 37
Geerlings, Paul, 183 Ruedenberg, Klaus, 103
Gill, Peter M. W, 27 Samson, Claire C. M., 1
Hunt, Katharine L. C., 169 Sears, John S., 75
Klopper, Wim, 1 Sherrill, C. David, 75
Kowalski, Karol, 37 Slipchenko, Lyudmila V., 89
Krylov, Anna L., 89 Stanton, John F., 193
Kiimmel, Stephan, 13 Tao, Jianmin, 13
Levchenko, Sergey V., 89 Truhlar, Donald G., 153
Lynch, Benjamin J., 153 Wilson, Angela K., ix
203

In Electron Correlation Methodology; Wilson, A., el al.;
ACS Symposium Series; American Chemical Society: Washington, DC, 2007.



Publication Date: March 13, 2007 | doi: 10.1021/bk-2007-0958.ix002

Downloaded by TECHNISCHE UNIV MUENCHEN on October 23, 2009 | http://pubs.acs.org

Subject Index

A

Ab initio methods
equilibrium structures, 194
mean unsigned error vs. cost, 160,
164f
quantitative studies, 104
AM1 semi-empirical method
description, 154-155
mean unsigned errors, root-mean-
square errors, and costs, 160,
163¢
mean unsigned error vs. cost, 160,
164f
Aniline. See Protonation site of aniline
Approximations, hierarchy of, to n-
electron wavefunction, 911
Atomization energies (AEs)
aniline, 187¢
lithium hydride, 159¢
test set, 157-158

B

Barrier heights (BHs), test set with
forward and reverse reaction,
157
Basis functions. See Correlated basis
functions for large molecules
Basis sets. See Correlation consistent
basis sets
Becke's correlation functionals, spin
resolution, 21
BLYP and B3LYP functionals
exchange-correlation energy, 18t,
19¢
quantum chemistry, 20
Bond breaking
assessment of multi-reference
methods, 81, 83-84

assessment of single-reference
methods, 78-81

errors in potential energies for CH,
using multi-reference methods,
82f

errors in potential energy curves for
CH,, 80f

extended coupled-cluster (ECC),
59-61

F, molecule, 85¢

ground-state energies of nitrogen,
56t, 63t

minimalist configuration-
interaction approaches, 8486

non-parallelity error (NPE) for BH,
HF and CH,, 82¢

potential energy curves for CH,
using restricted orbitals, 79/

potential energy curves for CH,
using unrestricted orbitals, 80f

potential energy curves for N,
molecule, 57f, 64f

problem, 75-78

quasi-variational and quadratic
method of moments of coupled-
clusters (MMCC) methods, 54—
58

spin-flip method, 96

See also Extended coupled-cluster
(ECC) theory

Born—Oppenheimer approximation

computational thermochemistry,
154

electronic energy of molecule, 169

electronic kinetic energy, 176

C

Charge-density susceptibilities
definition, 169-170

205

In Electron Correlation Methodology; Wilson, A., el al.;
ACS Symposium Series; American Chemical Society: Washington, DC, 2007.



Publication Date: March 13, 2007 | doi: 10.1021/bk-2007-0958.ix002

Downloaded by TECHNISCHE UNIV MUENCHEN on October 23, 2009 | http://pubs.acs.org

206

nonlocal, 171-173
Chemical problems, electron
correlation, 104
Complete-active-space second-order
perturbation theory (CASPT2),
bond-breaking, 83
Complete-active-space self-consistent-
field (CASSCF) method, bond-
breaking in CH,, 82f, 83
Complete basis set (CBS)
correlation energy, 116, 117
Gaussian basis sets converging
towards CBS limit, 126
mean unsigned errors, root-mean-
square errors, and costs, 160,
162¢
mean unsigned error vs. cost for
method, 160, 164/
Complete configuration interaction
(CCI), description, 155
Computational effort. See Economical
description of electron correlation
Computational thermochemistry. See
Multilevel methods for
thermochemistry
Configurational interaction singles
(CIS), excited state model, 911
Configuration interaction (CI)
calculations
accuracy, 104
incremental correlation energy, 126
similarity-transformed
Hamiltonian, 9-10
See also Correlation consistent
basis sets
Configuration interaction (CI)
methods
configurations from split-localized
molecular orbitals (MOs), 109/
convergence rate of SDTQ-CI
truncated expansions, 109/
convergence rate of truncated
SDTQ-CI expansions, 113f
correlation energies, 27-28

minimalist, for bond breaking, 84—
86
orbital optimization of truncated
SDTQ-CI expansions, 114, 115¢
ordering of configurations, 108,
110
truncation by a priori configuration
selection, 111-112
truncation criterion, 110-111
truncation of known CI expansion,
108-111
Configuration spaces, reducing size a
priori, 106
Consistent basis sets. See Correlation
consistent basis sets
Correlated basis functions for large
molecules
calculations of He ground-state
energy in subsets, 10f
computed equilibrium atomization
energies, 7t
Coulomb hole of He ground state,
f
description of electron correlation,
2
effect of adjustable parameter on
number of vanishing integrals,
8,9/
examples of R12 calculations, 6-7
externally contracted MP2 method,
4-5
formulation of R12 theory, 34
Ne atom absolute pair energy, 7¢
orbital-invariant MP2-R12 method,
5-6
R12 methods, 2-9
R12 methods augmented with
Gaussian geminals, 8-9
similarity-transformed
Hamiltonian, 9-10
slow convergence of computed to
exact wave function, 2
valence shell MP2 correlation
energy in H,0, 5¢

In Electron Correlation Methodology; Wilson, A., el al.;
ACS Symposium Series; American Chemical Society: Washington, DC, 2007.



Publication Date: March 13, 2007 | doi: 10.1021/bk-2007-0958.ix002

Downloaded by TECHNISCHE UNIV MUENCHEN on October 23, 2009 | http://pubs.acs.org

Correlation consistent basis sets

all-electron basis sets for mercury
(Hg), 138-140

all-electron basis sets for yttrium
(Y), 135

all-electron correlation energies for
non-relativistic (NR) and DK-
relativistic CISD calculations for
Hg atom, 141f

all-electron sets, 126—127

basis set errors for HF energy and
CISD correlation energy with
final cc-pVnZ-PP basis sets for
'S and *P states of Hg, 139/

basis set errors for HF energy and
CISD correlation energy with
final cc-pVnZ-PP basis sets for
Y, 1341

cc-pRXnZ basis sets for Y, 130—
134

cc-pVnZ-PP basis sets for Hg, 135-
138

CCSD(T) (coupled cluster singles
and doubles with perturbative
triples) spectroscopic constants
for *IT state of YC, 142¢

CCSD(T) spectroscopic constants
for X'T* state of HgH", 144¢

contributions of correlating
functions to average CISD
correlation energy of 55’ 4d, 5s
44, and 44 states of Y, 131

contributions of correlating
functions to CISD correlation
energy of 5d'° state of Hg, 136/

final cc-pVnZ-PP basis sets, 133,
138

Gaussian basis sets converging
toward complete basis set (CBS)
limit, 126

Hartree-Fock (HF) base sets from
extended even tempered
(ExtET) expansions, 129

HF errors relative to base set vs.
number of functions in

207

expansions for 5s° 4d state of Y,
132f
HF errors relative to basis set vs.
number of functions for Hg,
137
methodology, 127-140
molecular benchmarks, 140-147
optimization in presence of ECP,
129-130
post-d elements Ga—Rn, 128
pseudopotentials (PP), 126
relativistic effective core potentials
(ECPs), 126
spectroscopic constants for X'Z"
HgH’, 145¢
spectroscopic constants for X'Z,"
state of Hg,, 146¢, 148t
steps in development of, 127
strategies for transition metals,
128-129
X'z" HgH', 143-144
X'Z," He,, 144-145, 147
X*I1 for yttrium monocarbide
(YC), 140-143
See also Mercury (Hg); Yttrium
(Y)
Correlation energy
configuration interaction (CI)
methods, 27-28
equations estimating, 28-29
high- and low-density limits, 1617
parallel-spin and anti-parallel-spin,
22
parameterizations, 16—17
spin resolution of, in uniform
density limit, 21-23
Correlation recovery, two-stage
process, 104
Cost function, test molecules, 157
Coulomb energy, electron-electron
interactions, 170
Coulomb potential, electronic kinetic
energy, 176
Coupled-cluster (CC) methods
accuracy, 104

In Electron Correlation Methodology; Wilson, A., el al.;
ACS Symposium Series; American Chemical Society: Washington, DC, 2007.



Publication Date: March 13, 2007 | doi: 10.1021/bk-2007-0958.ix002

Downloaded by TECHNISCHE UNIV MUENCHEN on October 23, 2009 | http://pubs.acs.org

208

"black-box" character, 39, 58

bond breaking in Ny, 54-58

errors in approximating single-
reference methods for CH4!, 81

extended CC (ECC) theory
usefulness, 4142

extending, to potential energy
surfaces (PESs), 37-38

ground state, 91f

improving T1! and T2! components
by ECC theory, 58-67

including higher excited clusters,
38-39

method of moments of CC
(MMCQC) equations, 42-46

MMCC formalism, 39-40

MMCC methods, 40

multi-reference CC (MRCC)
formalisms, 38

non-parallelity error (NPE), 81, 82¢

potential energy surfaces (PESs)
involving breaking bonds, 40—
41

quasi-variational and quadratic
MMCC methods, 47-58

single-reference like approaches,
39

theoretical considerations of
MMCC, 47-54

See also Extended coupled-cluster
(ECC) theory

Density functional theory (DFT)

aniline protonation prediction
errors, 189-190

least expensive correlated
approach, 104

mean unsigned errors, root-mean-
square errors, and costs, 160,
163¢

mean unsigned error vs. cost, 160,
164f

protonation site of aniline, 184—
185
See also Self-consistent Hartree—
Fock-Wigner calculations
Density limit. See Exchange-
correlation energy functionals
Density parameter, definition, 14
Diffuse functions
atomization energies and electron
affinities of lithium hydride,
159¢
hydrogen in metal hydride, 158,
160
Diradicals
degeneracy between degenerate
states, 99-100
equilibrium geometries, harmonic
vibrational frequencies and
adiabatic excitation energies for
singlet methylene, 98¢
methylene and
trimethylenemethane (TMM),
97
n-system of TMM, 98, 99/
spin-flip method, 97-100
TMM electronic configuration of
ground state, 99f
Dissociation energies, F, molecule,
85¢
Douglas—Kroll-Hess (DK)
Hamiltonian, basis sets for Hg,
139-140
Dynamical correlation, short-range
electron correlation, 76
Dynamic electron correlation energy
accurate estimation method, 105,
114,120
estimate and analysis by localized
orbitals, 114-120
group correlation contributions,
116-117
numbers of orbitals, orbital pairs,
and comparing valence
correlation energies, 118¢, 119¢
semi empirical formula, 114-115

In Electron Correlation Methodology; Wilson, A., el al.;
ACS Symposium Series; American Chemical Society: Washington, DC, 2007.



Publication Date: March 13, 2007 | doi: 10.1021/bk-2007-0958.ix002

Downloaded by TECHNISCHE UNIV MUENCHEN on October 23, 2009 | http://pubs.acs.org

simplifying assumptions, 116
sources of error, 117, 120

E

Economical description of electron

correlation

accuracy by various approaches,
104

complete basis set (CBS)-limit
data, 116, 117

configuration interaction (CI) from
split-localized molecular orbitals
(MOs), 1091

deletion of determinants, 108

dynamic correlation energy
estimate and analysis by
localized orbitals, 114-120

energies of full and truncated
SDTQ-CI full optimized
reaction space model (FORSI
and FORS2) calculations, 115¢

formulation of objective, 105-107

method for accurate estimation of
dynamic electron correlation
energy, 105, 114-117, 120

method for selecting a priori
configurations for milli-hartree
accuracy, 105

numbers of orbitals, orbital-pairs
and comparison of valence
correlation energies, 118¢, 119¢

orbital determination, 107-108

orbital optimization of truncated
SDTQ-CI expansions, 114, 115¢

ordering of configurations, 108,
110

rate of convergence of SDTQ-CI
truncated expansions for FORS1
and FORS?2 active spaces for
HNO and NCCN, 109/

rate of convergence of truncated
SDTQ-CI expansions, 1131

209

reducing configuration spaces in
large molecules, 105-114
seven group correlation
contributions, 116—-117
simplifying assumptions, 116
source of errors in fittings, 117, 120
split-localized FORS molecular
orbitals, 107-108
strongly and weakly occupied
approximate FORS molecular
orbitals, 107
truncation by a priori configuration
selection, 111-112
truncation criterion, 110-111
truncation of known CI expansion,
108-111
two-stage process for recovery of
correlation, 104
Effective core potentials (ECP)
correlation consistent basis sets,
126-127
optimization of basis functions in
presence of, 129-130
See also Correlation consistent
basis sets
Electron affinities (EAs)
lithium hydride, 159¢
test set, 157158
Electron correlation
motion of electrons, 75-76
See also Economical description of
electron correlation
Electron-electron interaction energy,
self-energy, 177-178
Electron-electron interactions,
Coulomb energy, 170
Electronic charge density
electronic potential energy, 173,
174
instantaneous, 170-171
Electronic energy, total, of molecule,
169-170
Electronic kinetic energy, virial
theorem, 176-177

In Electron Correlation Methodology; Wilson, A., el al.;
ACS Symposium Series; American Chemical Society: Washington, DC, 2007.



Publication Date: March 13, 2007 | doi: 10.1021/bk-2007-0958.ix002

Downloaded by TECHNISCHE UNIV MUENCHEN on October 23, 2009 | http://pubs.acs.org

210

Electronic potential energy, total, of
molecule, 173-176
Electrons, potential energy, 170
Equation-of-motion (EOM), excxted
state model, 911
Equilibrium atomization energies, R12
calculations, 6-7
Equilibrium bond length, F, molecule,
85t
Equilibrium structure, determination
for polyatomic molecule, 194
Ethylene
ground state wavefunction, 92f
spin-flip method for bond-breaking,
96
Euler's theorem, electronic kinetic
energy, 176
Exchange-correlation energy
functionals
analytic or semi-analytic many-
body methods, 17
BLYP and B3LYP functionals in
quantum chemistry, 18¢, 19¢, 20
correlation energy, 16-17
essentially-exact PW92 (Perdew
and Wang) exchange-correlation
energy per electron, 17, 18¢, 19¢
exchange energy, 16
generalized gradient approximation
(GGA), 14
Gunnarsson-Lundqvist (GL)
parameterization, 17, 18¢, 19¢
Hedin and Lundqvist (HL)
parameterization, 17, 18¢
knowledge about uniform density
limit, 15-17
Moruzzi, Janak and Williams
(MJW) parameterization, 17,
18¢, 19¢
parallel-spin and anti-parallel-spin
correlation energies, 22
parallel-spin and anti-parallel-spin
exchange-correlation energies,
22-23

performance of energy functionals
in uniform density limit, 20-21
random phase approximation
(RPA), 17, 18¢, 19¢
ratio of approximate to exact
exchange energy per electron,
21t
Singwi, Sjdlander, Tosi and Land
(SSTL) calculation, 17
spin resolution of correlation
energy in uniform density limit,
21-23
spin resolution of correlation
energy of spin-unpolarized
uniform electron gas, 22¢
Vosko, Wilk and Nusair (VWNS)
approximation, 17, 18, 19¢
why uniform density limit, 13-15
Exchange energy, uniform electron
density, 16
Excited states, approximate methods,
90, 91f
Explicitly correlated Gaussian (ECG)
methods, small molecule accuracy,
8
Extended coupled-cluster (ECC)
theory
applicability, 61-62
components T, and T, in bond
breaking region, 59—60
ground-state energies of N,
molecule, 63¢
improving T, and T, components
by, 58-67
overlaps of wave functions, 66/
potential energy curves for N,
molecule, 64f
triple bond breaking in N,, 6465

F

Filatov and Thiel (FT)
parameterization

In Electron Correlation Methodology; Wilson, A., el al.;
ACS Symposium Series; American Chemical Society: Washmgton DC, 2007.



Publication Date: March 13, 2007 | doi: 10.1021/bk-2007-0958.ix002

Downloaded by TECHNISCHE UNIV MUENCHEN on October 23, 2009 | http://pubs.acs.org

exchange-correlation energy, 17,
18¢, 19¢
scaling relation, 22
Fluctuation correlations, definition,
170-171
Fluctuation-dissipation theorem
averaged potential energy, 175
charge-density susceptibility, 174
175

long-range exchange-correlation
effects, 171

nonlocal charge-density
susceptibilities, 171-173

short- and long-range fluctuation
correlations, 171

Fluorine F,, equilibrium bond lengths
and dissociation energies, 85¢

Force fields
harmonic and cubic, of Si;, 195~

196
See also Silicon trimer
FORS. See Full optimized reaction
space model (FORS)
Full configuration interaction (FCI)
bond breaking model, 77
description, 154, 155
Full optimized reaction space model
(FORS)
convergence rate of SDTQ-CI
truncated expansions for, active
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Gaussian methods
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161¢

mean unsigned error vs. cost for
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correlated calculations, 155-156

Generalized gradient approximation
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energy, 14

Gori-Giorgi, Sachetti and Bachelet
(GSB), spin resolution of
correlation energy, 22

Ground state
approximate methods, 90, 911
wavefunction of ethylene, 92f

Gunnarsson—Lundqvist (GL)
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correlation energy, 17, 18, 19¢
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33t
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32t
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energy calculations, 10/
Hellmann-Feynman theorem,
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Huzinaga and Klobukowski (HK),
basis sets for Hg, 139
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164f
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160
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affinities, 159¢
diffuse functions on hydrogen, 158,
160
Local spin density (LSD)
approximation, exchange-
correlation energy, 13-14

M

Mercury (Hg)

all-electron basis sets for Hg, 138-
140

all-electron correlation energies
from non-relativistic (NR) and
DK-relativistic CISD
calculations, 141f

basis set errors for Hartree—Fock
(HF) energy and CISD
correlation energy, 1391

cc-pVnZ-PP basis sets for Hg, 135—
138

CCSD(T) spectroscopic constants
for X'Z* state of HgH", 144¢

contributions of correlating
functions to CISD correlation
energy of Hg, 136/

final cc-pVnZ-PP basis sets, 138

HF errors relative to base set, 137f

optimization of HF primitive sets,
135, 137

spectroscopic constants of X'Z" for
HgH*, 145¢

spectroscopic constants of X'Z,"
state of Hg,, 1461, 148¢

X'Z* of mercury hydride cation
HgH’, 143-144

X'z, for Hg dimer, 144-145, 147

Methane (CH,)
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error in potential energies for CH,
using multi-reference methods,
82f
errors in potential energies, 80/, 81
non-parallelity error (NPE), 81, 82¢
potential energy curves, 79/, 80f
Method of moments of coupled-
cluster (MMCC)
bond breaking in N, 5458
equations, 42-46
formalism, 39-40
ground-state formalism, 42-46
quadratic MMCC (QMMCC)
variant, 4142
quasi-variational MMCC
(QVMMCC) formalism, 41-42
QVMMCC and QMMCC methods,
47-58
theory of QVYMMCC and
QMMCC, 47-54
types, 40
Methylene
equilibrium geometries, harmonic
vibrational frequencies, and
adiabatic excitation energies, 98¢
spin-flip method, 97
See also Spin-flip approach
Microwave data, equilibrium
structures, 194
Minimalist configuration-interaction
approaches, bond breaking, 84-86
Moller-Plesset, second-order (MP2)
theory
accuracy, 104
computation, 28
externally contracted MP2 method,
4-5
orbital-invariant MP2-R12 method,
5-6
Mgller-Plesset theory (MP), ground
state, 911
Molecules
electronic potential energy, 173~
176
total electronic energy, 169-170
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Monte Carlo data
parameterizations for fitting, 16
spin resolution of correlation
energy, 22-23
Moruzzi, Janak and Williams (MJW),
exchange-correlation energy, 17,
18¢, 19¢
Multi-coefficient correlation methods
(MCCM)
mean unsigned errors, root-mean-
square errors, and costs, 160,
161¢, 162¢
mean unsigned error vs. cost, 160,
164f
Multilevel methods for
thermochemistry
AMI and PM3 semi-empirical
methods, 154-155
atomization energies and electron
affinities for LiH, 159¢
Bormn-Oppenheimer approximation,
154
complete basis set (CBS) methods,
156
complete configuration interaction
(CCI), 155
cost function, 157
density functional theory (DFT),
156
diffuse functions on hydrogen, 158,
160
errors for DFT, hybrid DFT, and
AMI methods, 160, 163¢
errors for multilevel methods, 160,
161¢
errors for multilevel methods with
lower costs, 160, 162¢
Gaussian-2 (G2), G3 and G3
extended (G3X) methods, 155-
156
Hartree-Fock (HF) theory, 154
hybrid DFT functionals, 156
hybrid DFT methods, 157
mean unsigned error vs. cost for all
methods, 160, 164f

methods and test data, 156-158
multi-coefficient correlation
methods (MCCM), 155
quadratic configuration interaction
with double and single
excitations and quasi-
perturbative connected triples
(QCISD(T)), 156
scaling-all-correlation (SAC)
.method, 155
scaling external correlation (SEC),
155
Multi-reference coupled-cluster
(MRCC) formalisms
bond breaking, 38
reduced MRCCSD (single, double)
method, 39
See also Coupled-cluster (CC)
methods
Multi-reference methods
assessment, 81, 83-84
balanced treatment of electron
correlation, 76

N

Ne atom, absolute pair energy, 7¢
Nitrogen atom, protonation site of
aniline, 184
Nitrogen molecule
bond breaking in N,, 54-58
ground-state energies, 561, 63¢
potential energy curves (PEC), 57/,
64f
Nondynamical correlation, long-range
electron correlation, 76
Nonlocal charge-density
susceptibilities
coupling-constant formalism, 172
dielectric response function, 172—
173
electronic potential energy, 173~
176
nonlocal polarizability density, 172
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quantum mechanical equation,
171-172
static charge-density susceptibility,
172
Non-parallelity error (NPE)
BH, HF, and CH, molecules, 82¢
quantifying errors, 81

0]

Orbital determination, full optimized
reaction space model (FORS), 107-
108

P

Parameterizations, correlation energy,
16-17
Perdew and Wang (PW), scaling
relation, 21, 22¢
Perdew and Wang (PW92)
approximation, exchange-
correlation energy, 17, 18¢, 19¢
Perdew and Zunger (PZ)
parameterization, exchange-
correlation energy, 16, 18¢, 19¢
PM3 semi-empirical method,
description, 154155
Polyatomic molecule
equilibrium structure, 194
See also Silicon trimer
Potential energy curves
CH, using restricted orbitals, 79/
CH, using unrestricted orbitals, 80/
comparing spin-flip self-consistent
field (SF-SCF) and spin-
complete alternative, 86/
errors in potential energies for CH,,
8of
See also Bond breaking
Potential energy of electrons
fluctuation-dissipation theorem,
175
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quantum mechanical average, 170
Potential energy surfaces (PESs)
extending coupled-cluster (CC)
methods to, 37-38
See also Extended coupled-cluster
(ECC) theory
Proton affinities
aniline, 187¢
calculations, 185
protonation of aniline, 189
Protonation site of aniline
computed total atomization energy
and proton affinities, 187¢
density functional theory (DFT)
reactivity indices, 184-185
DFT predictions, 189-190
gas phase, 184
Hartree—Fock and semi-empirical
calculations, 184
ion mobility/mass spectroscopy
method, 184
methods, 185-186
nitrogen atom in solution, 184
potential sources of error, 189
preferred, in solution, 184
proton affinity calculations, 185
relative energies of three
protonated species, 188
resonance stabilization of aromatic
vs. non-aromatic systems, 188
Pseudopotentials (PP), correlation
consistent basis sets, 126-127

Q

Quadratic configuration interaction
with double and single excitations
and quasi-pertubative connected
triples (QCISD(T))
approximating large-basis-set, 156
mean unsigned errors, root-mean-

square errors, and costs, 160,
1611, 162¢
single-level method, 160
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Quantum chemistry, bond breaking
problem, 75-78

R

R12 methods
augmentation with Gaussian
geminals, 8-9
computed equilibrium atomization
energies, 7t
Coulomb hole in He ground state,
f
effect of adjustable parameter on
number of vanishing integrals,
8,9
electron correlation including
interelectronic distances, 2
examples of R12 calculations, 6—
7
explicitly correlated Gaussians
(ECG) methods, 8
externally contracted MP2 method,
4-5
formulation of R12 theory, 3—4
MP2-R12 method, 4-5
Ne atom absolute pair energy, 7¢
orbital-invariant MP2-R12 method,
5-6
resolution-of-identity (RI)
approximation, 6
slow convergence of computed vs.
exact wave function, 2
valence shell MP2 correlation
energy in H,0, 5¢
Random phase approximation (RPA),
exchange-correlation energy, 17,
18¢, 19t
Recovery of correlation, two-stage
process, 104
Relativistic effective core potentials
correlation consistent basis sets,
126-127
See also Correlation consistent
basis sets

Restricted active space configuration
interaction (RASCI) approach,
bond-breaking, 83-84

Restricted Hartree—Fock (RHF)
errors in potential energies for CH,,

801
failure, 78-79

Rotational constants, vibration-

rotation contributions, 194-195

S

Scaling-all-correlation (SAC) method
description, 155
mean unsigned errors, root-mean-
square errors, and costs, 160,
162t
Scaling external correlation (SEC),
description, 155
Schmidt, Kurth, Tao and Perdew
(SKTP), scaling relation, 22
Second-order configuration interaction
(SOCI) approach, bond-breaking,
83-84
Self-consistent field (SCF), ground
state model, 91/
Self-consistent Hartree—Fock—Wigner
calculations
correlation method, 31-34
errors in HFW/STO-3G energies,
33
errors in non-SCF and HFW
energies, 32t
Fock matrix, 30
optimizing parameters, 31
standalone program, 31
theory, 28-31
Wigner intracule, 28, 31
Self-energy, electron-electron
interaction energy, 177-178
Self-interaction effects, Coulomb
energy, 170
Semi-empirical methods AM1 and
PM3, description, 154-155
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Silicon
abundance, 193
isomers of cyclic SiC; molecule,
194
Silicon trimer
calculating harmonic and cubic
force fields, 195-196
harmonic frequencies and cubic
force constants for normal
isotopomer, 197¢
independent structural parameters,
196, 198
refined structural parameters for,
198¢
studying and labeling five
isotopomers, 196
vibration-rotation contribution to
rotational constants, 194-195
Similarity-transformed Hamiltonian,
configuration-interaction (CI)
calculations, 9-10
Single-reference methods
assessment, 7881
Hartree-Fock starting point, 154
potential energy curves for CH,,
791, 80f
strategies for bond breaking
problem, 76-77
well-behaved molecules, 90
Singwi, Sjolander, Tosi and Land
(SSTL), exchange-correlation
energy, 17
Spin-flip approach
bond breaking, 77-78, 84, 96
configuration interaction, 8485
diradicals, 97-100
ethylene torsional potential, 96
hierarchy of spin-flip (SF) models,
95f
high-spin triplet reference state,
93-94
method, 93-95
potential energy curves for HF, 86/
two electrons in three orbitals
system, 95/

217

Spin resolution, correlation energy in
uniform density limit, 21-23

T

Theoretical model chemistry,
approximations to exact
wavefunction, 90, 91/

Theory, formulation of R12, 34

Thermochemistry. See Multilevel
methods for thermochemistry

Torsional potential, ethylene, 96

Transition metal elements
development of accurate basis sets,

128
See also Mercury (Hg); Yttrium
)

Trimethylenemethane (TMM)

electronic configuration of ground
state, 99/

n-system, 98, 991

spin-flip method, 99-100

See also Diradicals

Two-electron density functional
theory. See Self-consistent Hartree—
Fock—Wigner calculations

U

Uniform density limit

exact constraints, 14-15

generalized gradient approximation
(GGA), 14

knowledge about, 15-17

local spin density (LSD)
approximation, 13—14

performance of energy functionals
in, 20-21

purpose, 13-15

spin resolution of correlation
energy in, 21-23

See also Exchange-correlation
energy functionals
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Unrestricted Hartree-Fock (UHF)
bond breaking, 76-77
description of bond breaking, 79,

80f

Vv

Valence-bond approach, predictions,
104

Vibration-rotation contributions,
rotational constants, 194—-195

Virial theorem, electronic kinetic
energy, 176

Vosko, Wilk and Nusair (VWNS5)
approximation, exchange-
correlation energy, 17, 18¢, 19¢

w

Wave function

convergence of computed, to exact,

2
interelectronic distances, 2, 4

Wigner (W) approximation, exchange-

correlation energy, 18, 19¢, 20
Wigner intracule

two-electron phase-space
distribution, 28

See also Self-consistent Hartree—
Fock—Wigner calculations

Y

Yttrium (Y)

all-electron basis sets for Y, 135

basis set errors for Hartree—Fock
(HF) energy and CISD (singles
and doubles CI) correlation
energy, 134f

cc-pRVnZ basis sets for, 130—
134

CCSD(T) spectroscopic constants
for *I1 state of YC, 142¢

CISD optimizations, 130, 132

contributions of correlating
functions to CISD correlation
energy, 1311

final cc-pVnZ-PP basis sets, 133

HF errors relative to base set, 132f

optimization of spd HF sets, 132—
133

X[ for yttrium monocarbide
(YC), 140-143
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